linux-stable-rt/arch/um/kernel/init_task.c

54 lines
1.4 KiB
C
Raw Normal View History

uml: iRQ stacks Add a separate IRQ stack. This differs from i386 in having the entire interrupt run on a separate stack rather than starting on the normal kernel stack and switching over once some preparation has been done. The underlying mechanism, is of course, sigaltstack. Another difference is that interrupts that happen in userspace are handled on the normal kernel stack. These cause a wait wakeup instead of a signal delivery so there is no point in trying to switch stacks for these. There's no other stuff on the stack, so there is no extra stack consumption. This quirk makes it possible to have the entire interrupt run on a separate stack - process preemption (and calls to schedule()) happens on a normal kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought. The IRQ stack for CPU 0 is declared in the same way as the initial kernel stack. IRQ stacks for other CPUs will be allocated dynamically. An extra field was added to the thread_info structure. When the active thread_info is copied to the IRQ stack, the real_thread field points back to the original stack. This makes it easy to tell where to copy the thread_info struct back to when the interrupt is finished. It also serves as a marker of a nested interrupt. It is NULL for the first interrupt on the stack, and non-NULL for any nested interrupts. Care is taken to behave correctly if a second interrupt comes in when the thread_info structure is being set up or taken down. I could just disable interrupts here, but I don't feel like giving up any of the performance gained by not flipping signals on and off. If an interrupt comes in during these critical periods, the handler can't run because it has no idea what shape the stack is in. So, it sets a bit for its signal in a global mask and returns. The outer handler will deal with this signal itself. Atomicity is had with xchg. A nested interrupt that needs to bail out will xchg its signal mask into pending_mask and repeat in case yet another interrupt hit at the same time, until the mask stabilizes. The outermost interrupt will set up the thread_info and xchg a zero into pending_mask when it is done. At this point, nested interrupts will look at ->real_thread and see that no setup needs to be done. They can just continue normally. Similar care needs to be taken when exiting the outer handler. If another interrupt comes in while it is copying the thread_info, it will drop a bit into pending_mask. The outer handler will check this and if it is non-zero, will loop, set up the stack again, and handle the interrupt. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 13:22:34 +08:00
/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,intel.linux}.com)
* Licensed under the GPL
*/
#include "linux/mm.h"
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-30 06:36:13 +08:00
#include "linux/fs.h"
#include "linux/module.h"
#include "linux/sched.h"
#include "linux/init_task.h"
#include "linux/mqueue.h"
#include "asm/uaccess.h"
#include "asm/pgtable.h"
#include "mem_user.h"
#include "os.h"
static struct fs_struct init_fs = INIT_FS;
struct mm_struct init_mm = INIT_MM(init_mm);
static struct files_struct init_files = INIT_FILES;
static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
EXPORT_SYMBOL(init_mm);
/*
* Initial task structure.
*
* All other task structs will be allocated on slabs in fork.c
*/
struct task_struct init_task = INIT_TASK(init_task);
EXPORT_SYMBOL(init_task);
/*
* Initial thread structure.
*
uml: iRQ stacks Add a separate IRQ stack. This differs from i386 in having the entire interrupt run on a separate stack rather than starting on the normal kernel stack and switching over once some preparation has been done. The underlying mechanism, is of course, sigaltstack. Another difference is that interrupts that happen in userspace are handled on the normal kernel stack. These cause a wait wakeup instead of a signal delivery so there is no point in trying to switch stacks for these. There's no other stuff on the stack, so there is no extra stack consumption. This quirk makes it possible to have the entire interrupt run on a separate stack - process preemption (and calls to schedule()) happens on a normal kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought. The IRQ stack for CPU 0 is declared in the same way as the initial kernel stack. IRQ stacks for other CPUs will be allocated dynamically. An extra field was added to the thread_info structure. When the active thread_info is copied to the IRQ stack, the real_thread field points back to the original stack. This makes it easy to tell where to copy the thread_info struct back to when the interrupt is finished. It also serves as a marker of a nested interrupt. It is NULL for the first interrupt on the stack, and non-NULL for any nested interrupts. Care is taken to behave correctly if a second interrupt comes in when the thread_info structure is being set up or taken down. I could just disable interrupts here, but I don't feel like giving up any of the performance gained by not flipping signals on and off. If an interrupt comes in during these critical periods, the handler can't run because it has no idea what shape the stack is in. So, it sets a bit for its signal in a global mask and returns. The outer handler will deal with this signal itself. Atomicity is had with xchg. A nested interrupt that needs to bail out will xchg its signal mask into pending_mask and repeat in case yet another interrupt hit at the same time, until the mask stabilizes. The outermost interrupt will set up the thread_info and xchg a zero into pending_mask when it is done. At this point, nested interrupts will look at ->real_thread and see that no setup needs to be done. They can just continue normally. Similar care needs to be taken when exiting the outer handler. If another interrupt comes in while it is copying the thread_info, it will drop a bit into pending_mask. The outer handler will check this and if it is non-zero, will loop, set up the stack again, and handle the interrupt. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 13:22:34 +08:00
* We need to make sure that this is aligned due to the
* way process stacks are handled. This is done by having a special
* "init_task" linker map entry..
*/
uml: iRQ stacks Add a separate IRQ stack. This differs from i386 in having the entire interrupt run on a separate stack rather than starting on the normal kernel stack and switching over once some preparation has been done. The underlying mechanism, is of course, sigaltstack. Another difference is that interrupts that happen in userspace are handled on the normal kernel stack. These cause a wait wakeup instead of a signal delivery so there is no point in trying to switch stacks for these. There's no other stuff on the stack, so there is no extra stack consumption. This quirk makes it possible to have the entire interrupt run on a separate stack - process preemption (and calls to schedule()) happens on a normal kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought. The IRQ stack for CPU 0 is declared in the same way as the initial kernel stack. IRQ stacks for other CPUs will be allocated dynamically. An extra field was added to the thread_info structure. When the active thread_info is copied to the IRQ stack, the real_thread field points back to the original stack. This makes it easy to tell where to copy the thread_info struct back to when the interrupt is finished. It also serves as a marker of a nested interrupt. It is NULL for the first interrupt on the stack, and non-NULL for any nested interrupts. Care is taken to behave correctly if a second interrupt comes in when the thread_info structure is being set up or taken down. I could just disable interrupts here, but I don't feel like giving up any of the performance gained by not flipping signals on and off. If an interrupt comes in during these critical periods, the handler can't run because it has no idea what shape the stack is in. So, it sets a bit for its signal in a global mask and returns. The outer handler will deal with this signal itself. Atomicity is had with xchg. A nested interrupt that needs to bail out will xchg its signal mask into pending_mask and repeat in case yet another interrupt hit at the same time, until the mask stabilizes. The outermost interrupt will set up the thread_info and xchg a zero into pending_mask when it is done. At this point, nested interrupts will look at ->real_thread and see that no setup needs to be done. They can just continue normally. Similar care needs to be taken when exiting the outer handler. If another interrupt comes in while it is copying the thread_info, it will drop a bit into pending_mask. The outer handler will check this and if it is non-zero, will loop, set up the stack again, and handle the interrupt. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 13:22:34 +08:00
union thread_union init_thread_union
__attribute__((__section__(".data.init_task"))) =
{ INIT_THREAD_INFO(init_task) };
union thread_union cpu0_irqstack
__attribute__((__section__(".data.init_irqstack"))) =
{ INIT_THREAD_INFO(init_task) };
void unprotect_stack(unsigned long stack)
{
os_protect_memory((void *) stack, THREAD_SIZE, 1, 1, 0);
}