linux-stable-rt/include/asm-blackfin/mach-bf533/anomaly.h

264 lines
13 KiB
C
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/*
* File: include/asm-blackfin/mach-bf533/anomaly.h
* Bugs: Enter bugs at http://blackfin.uclinux.org/
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
*
* Copyright (C) 2004-2007 Analog Devices Inc.
* Licensed under the GPL-2 or later.
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
*/
/* This file shoule be up to date with:
* - Revision B, 12/10/2007; ADSP-BF531/BF532/BF533 Blackfin Processor Anomaly List
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
*/
#ifndef _MACH_ANOMALY_H_
#define _MACH_ANOMALY_H_
/* We do not support 0.1 or 0.2 silicon - sorry */
#if __SILICON_REVISION__ < 3
# error will not work on BF533 silicon version 0.0, 0.1, or 0.2
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
#endif
#if defined(__ADSPBF531__)
# define ANOMALY_BF531 1
#else
# define ANOMALY_BF531 0
#endif
#if defined(__ADSPBF532__)
# define ANOMALY_BF532 1
#else
# define ANOMALY_BF532 0
#endif
#if defined(__ADSPBF533__)
# define ANOMALY_BF533 1
#else
# define ANOMALY_BF533 0
#endif
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/* Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot 2 Not Supported */
#define ANOMALY_05000074 (1)
/* UART Line Status Register (UART_LSR) Bits Are Not Updated at the Same Time */
#define ANOMALY_05000099 (__SILICON_REVISION__ < 5)
/* Watchpoint Status Register (WPSTAT) Bits Are Set on Every Corresponding Match */
#define ANOMALY_05000105 (1)
/* DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops */
#define ANOMALY_05000119 (1)
/* Rx.H Cannot Be Used to Access 16-bit System MMR Registers */
#define ANOMALY_05000122 (1)
/* Instruction DMA Can Cause Data Cache Fills to Fail (Boot Implications) */
#define ANOMALY_05000158 (__SILICON_REVISION__ < 5)
/* PPI Data Lengths Between 8 and 16 Do Not Zero Out Upper Bits */
#define ANOMALY_05000166 (1)
/* Turning Serial Ports on with External Frame Syncs */
#define ANOMALY_05000167 (1)
/* PPI_COUNT Cannot Be Programmed to 0 in General Purpose TX or RX Modes */
#define ANOMALY_05000179 (__SILICON_REVISION__ < 5)
/* PPI_DELAY Not Functional in PPI Modes with 0 Frame Syncs */
#define ANOMALY_05000180 (1)
/* Timer Pin Limitations for PPI TX Modes with External Frame Syncs */
#define ANOMALY_05000183 (__SILICON_REVISION__ < 4)
/* False Protection Exceptions */
#define ANOMALY_05000189 (__SILICON_REVISION__ < 4)
/* False I/O Pin Interrupts on Edge-Sensitive Inputs When Polarity Setting Is Changed */
#define ANOMALY_05000193 (__SILICON_REVISION__ < 4)
/* Restarting SPORT in Specific Modes May Cause Data Corruption */
#define ANOMALY_05000194 (__SILICON_REVISION__ < 4)
/* Failing MMR Accesses When Stalled by Preceding Memory Read */
#define ANOMALY_05000198 (__SILICON_REVISION__ < 5)
/* Current DMA Address Shows Wrong Value During Carry Fix */
#define ANOMALY_05000199 (__SILICON_REVISION__ < 4)
/* SPORT TFS and DT Are Incorrectly Driven During Inactive Channels in Certain Conditions */
#define ANOMALY_05000200 (__SILICON_REVISION__ < 5)
/* Receive Frame Sync Not Ignored During Active Frames in SPORT Multi-Channel Mode */
#define ANOMALY_05000201 (__SILICON_REVISION__ < 4)
/* Possible Infinite Stall with Specific Dual-DAG Situation */
#define ANOMALY_05000202 (__SILICON_REVISION__ < 5)
/* Specific Sequence That Can Cause DMA Error or DMA Stopping */
#define ANOMALY_05000203 (__SILICON_REVISION__ < 4)
/* Incorrect data read with write-through cache and allocate cache lines on reads only mode */
#define ANOMALY_05000204 (__SILICON_REVISION__ < 4 && ANOMALY_BF533)
/* Recovery from "Brown-Out" Condition */
#define ANOMALY_05000207 (__SILICON_REVISION__ < 4)
/* VSTAT Status Bit in PLL_STAT Register Is Not Functional */
#define ANOMALY_05000208 (1)
/* Speed Path in Computational Unit Affects Certain Instructions */
#define ANOMALY_05000209 (__SILICON_REVISION__ < 4)
/* UART TX Interrupt Masked Erroneously */
#define ANOMALY_05000215 (__SILICON_REVISION__ < 5)
/* NMI Event at Boot Time Results in Unpredictable State */
#define ANOMALY_05000219 (1)
/* Incorrect Pulse-Width of UART Start Bit */
#define ANOMALY_05000225 (__SILICON_REVISION__ < 5)
/* Scratchpad Memory Bank Reads May Return Incorrect Data */
#define ANOMALY_05000227 (__SILICON_REVISION__ < 5)
/* SPI Slave Boot Mode Modifies Registers from Reset Value */
#define ANOMALY_05000229 (1)
/* UART Receiver is Less Robust Against Baudrate Differences in Certain Conditions */
#define ANOMALY_05000230 (__SILICON_REVISION__ < 5)
/* UART STB Bit Incorrectly Affects Receiver Setting */
#define ANOMALY_05000231 (__SILICON_REVISION__ < 5)
/* PPI_FS3 Is Not Driven in 2 or 3 Internal Frame Sync Transmit Modes */
#define ANOMALY_05000233 (__SILICON_REVISION__ < 4)
/* Incorrect Revision Number in DSPID Register */
#define ANOMALY_05000234 (__SILICON_REVISION__ == 4)
/* DF Bit in PLL_CTL Register Does Not Respond to Hardware Reset */
#define ANOMALY_05000242 (__SILICON_REVISION__ < 4)
/* If I-Cache Is On, CSYNC/SSYNC/IDLE Around Change of Control Causes Failures */
#define ANOMALY_05000244 (__SILICON_REVISION__ < 5)
/* Spurious Hardware Error from an Access in the Shadow of a Conditional Branch */
#define ANOMALY_05000245 (1)
/* Data CPLBs Should Prevent Spurious Hardware Errors */
#define ANOMALY_05000246 (__SILICON_REVISION__ < 5)
/* Incorrect Bit Shift of Data Word in Multichannel (TDM) Mode in Certain Conditions */
#define ANOMALY_05000250 (__SILICON_REVISION__ == 4)
/* Maximum External Clock Speed for Timers */
#define ANOMALY_05000253 (__SILICON_REVISION__ < 5)
/* Incorrect Timer Pulse Width in Single-Shot PWM_OUT Mode with External Clock */
#define ANOMALY_05000254 (__SILICON_REVISION__ > 4)
/* Entering Hibernate State with RTC Seconds Interrupt Not Functional */
#define ANOMALY_05000255 (__SILICON_REVISION__ < 5)
/* Interrupt/Exception During Short Hardware Loop May Cause Bad Instruction Fetches */
#define ANOMALY_05000257 (__SILICON_REVISION__ < 5)
/* Instruction Cache Is Corrupted When Bits 9 and 12 of the ICPLB Data Registers Differ */
#define ANOMALY_05000258 (__SILICON_REVISION__ < 5)
/* ICPLB_STATUS MMR Register May Be Corrupted */
#define ANOMALY_05000260 (__SILICON_REVISION__ < 5)
/* DCPLB_FAULT_ADDR MMR Register May Be Corrupted */
#define ANOMALY_05000261 (__SILICON_REVISION__ < 5)
/* Stores To Data Cache May Be Lost */
#define ANOMALY_05000262 (__SILICON_REVISION__ < 5)
/* Hardware Loop Corrupted When Taking an ICPLB Exception */
#define ANOMALY_05000263 (__SILICON_REVISION__ < 5)
/* CSYNC/SSYNC/IDLE Causes Infinite Stall in Penultimate Instruction in Hardware Loop */
#define ANOMALY_05000264 (__SILICON_REVISION__ < 5)
/* Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks */
#define ANOMALY_05000265 (__SILICON_REVISION__ < 5)
/* High I/O Activity Causes Output Voltage of Internal Voltage Regulator (Vddint) to Increase */
#define ANOMALY_05000269 (__SILICON_REVISION__ < 5)
/* High I/O Activity Causes Output Voltage of Internal Voltage Regulator (Vddint) to Decrease */
#define ANOMALY_05000270 (__SILICON_REVISION__ < 5)
/* Spontaneous Reset of Internal Voltage Regulator */
#define ANOMALY_05000271 (__SILICON_REVISION__ < 4)
/* Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V */
#define ANOMALY_05000272 (1)
/* Writes to Synchronous SDRAM Memory May Be Lost */
#define ANOMALY_05000273 (1)
/* Timing Requirements Change for External Frame Sync PPI Modes with Non-Zero PPI_DELAY */
#define ANOMALY_05000276 (1)
/* Writes to an I/O Data Register One SCLK Cycle after an Edge Is Detected May Clear Interrupt */
#define ANOMALY_05000277 (1)
/* Disabling Peripherals with DMA Running May Cause DMA System Instability */
#define ANOMALY_05000278 (1)
/* False Hardware Error Exception When ISR Context Is Not Restored */
#define ANOMALY_05000281 (1)
/* Memory DMA Corruption with 32-Bit Data and Traffic Control */
#define ANOMALY_05000282 (1)
/* System MMR Write Is Stalled Indefinitely When Killed in a Particular Stage */
#define ANOMALY_05000283 (1)
/* SPORTs May Receive Bad Data If FIFOs Fill Up */
#define ANOMALY_05000288 (1)
/* Memory-To-Memory DMA Source/Destination Descriptors Must Be in Same Memory Space */
#define ANOMALY_05000301 (1)
/* SSYNCs After Writes To DMA MMR Registers May Not Be Handled Correctly */
#define ANOMALY_05000302 (__SILICON_REVISION__ < 5)
/* New Feature: Additional Hysteresis on SPORT Input Pins (Not Available On Older Silicon) */
#define ANOMALY_05000305 (__SILICON_REVISION__ < 5)
/* New Feature: Additional PPI Frame Sync Sampling Options (Not Available On Older Silicon) */
#define ANOMALY_05000306 (__SILICON_REVISION__ < 5)
/* False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory */
#define ANOMALY_05000310 (1)
/* Erroneous Flag (GPIO) Pin Operations under Specific Sequences */
#define ANOMALY_05000311 (1)
/* Errors When SSYNC, CSYNC, or Loads to LT, LB and LC Registers Are Interrupted */
#define ANOMALY_05000312 (1)
/* PPI Is Level-Sensitive on First Transfer */
#define ANOMALY_05000313 (1)
/* Killed System MMR Write Completes Erroneously On Next System MMR Access */
#define ANOMALY_05000315 (1)
/* Internal Voltage Regulator Values of 1.05V, 1.10V and 1.15V Not Allowed for LQFP Packages */
#define ANOMALY_05000319 (ANOMALY_BF531 || ANOMALY_BF532)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/* These anomalies have been "phased" out of analog.com anomaly sheets and are
* here to show running on older silicon just isn't feasible.
*/
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/* Watchpoints (Hardware Breakpoints) are not supported */
#define ANOMALY_05000067 (__SILICON_REVISION__ < 3)
/* Reserved bits in SYSCFG register not set at power on */
#define ANOMALY_05000109 (__SILICON_REVISION__ < 3)
/* Trace Buffers may record discontinuities into emulation mode and/or exception, NMI, reset handlers */
#define ANOMALY_05000116 (__SILICON_REVISION__ < 3)
/* DTEST_COMMAND initiated memory access may be incorrect if data cache or DMA is active */
#define ANOMALY_05000123 (__SILICON_REVISION__ < 3)
/* DMA Lock-up at CCLK to SCLK ratios of 4:1, 2:1, or 1:1 */
#define ANOMALY_05000124 (__SILICON_REVISION__ < 3)
/* Erroneous exception when enabling cache */
#define ANOMALY_05000125 (__SILICON_REVISION__ < 3)
/* SPI clock polarity and phase bits incorrect during booting */
#define ANOMALY_05000126 (__SILICON_REVISION__ < 3)
/* DMEM_CONTROL is not set on Reset */
#define ANOMALY_05000137 (__SILICON_REVISION__ < 3)
/* SPI boot will not complete if there is a zero fill block in the loader file */
#define ANOMALY_05000138 (__SILICON_REVISION__ < 3)
/* Allowing the SPORT RX FIFO to fill will cause an overflow */
#define ANOMALY_05000140 (__SILICON_REVISION__ < 3)
/* An Infinite Stall occurs with a particular sequence of consecutive dual dag events */
#define ANOMALY_05000141 (__SILICON_REVISION__ < 3)
/* Interrupts may be lost when a programmable input flag is configured to be edge sensitive */
#define ANOMALY_05000142 (__SILICON_REVISION__ < 3)
/* A read from external memory may return a wrong value with data cache enabled */
#define ANOMALY_05000143 (__SILICON_REVISION__ < 3)
/* DMA and TESTSET conflict when both are accessing external memory */
#define ANOMALY_05000144 (__SILICON_REVISION__ < 3)
/* In PWM_OUT mode, you must enable the PPI block to generate a waveform from PPI_CLK */
#define ANOMALY_05000145 (__SILICON_REVISION__ < 3)
/* MDMA may lose the first few words of a descriptor chain */
#define ANOMALY_05000146 (__SILICON_REVISION__ < 3)
/* The source MDMA descriptor may stop with a DMA Error */
#define ANOMALY_05000147 (__SILICON_REVISION__ < 3)
/* When booting from a 16-bit asynchronous memory device, the upper 8-bits of each word must be 0x00 */
#define ANOMALY_05000148 (__SILICON_REVISION__ < 3)
/* Frame Delay in SPORT Multichannel Mode */
#define ANOMALY_05000153 (__SILICON_REVISION__ < 3)
/* SPORT TFS signal is active in Multi-channel mode outside of valid channels */
#define ANOMALY_05000154 (__SILICON_REVISION__ < 3)
/* Timer1 can not be used for PWMOUT mode when a certain PPI mode is in use */
#define ANOMALY_05000155 (__SILICON_REVISION__ < 3)
/* A killed 32-bit System MMR write will lead to the next system MMR access thinking it should be 32-bit. */
#define ANOMALY_05000157 (__SILICON_REVISION__ < 3)
/* SPORT transmit data is not gated by external frame sync in certain conditions */
#define ANOMALY_05000163 (__SILICON_REVISION__ < 3)
/* SDRAM auto-refresh and subsequent Power Ups */
#define ANOMALY_05000168 (__SILICON_REVISION__ < 3)
/* DATA CPLB page miss can result in lost write-through cache data writes */
#define ANOMALY_05000169 (__SILICON_REVISION__ < 3)
/* DMA vs Core accesses to external memory */
#define ANOMALY_05000173 (__SILICON_REVISION__ < 3)
/* Cache Fill Buffer Data lost */
#define ANOMALY_05000174 (__SILICON_REVISION__ < 3)
/* Overlapping Sequencer and Memory Stalls */
#define ANOMALY_05000175 (__SILICON_REVISION__ < 3)
/* Multiplication of (-1) by (-1) followed by an accumulator saturation */
#define ANOMALY_05000176 (__SILICON_REVISION__ < 3)
/* Disabling the PPI resets the PPI configuration registers */
#define ANOMALY_05000181 (__SILICON_REVISION__ < 3)
/* PPI TX Mode with 2 External Frame Syncs */
#define ANOMALY_05000185 (__SILICON_REVISION__ < 3)
/* PPI does not invert the Driving PPICLK edge in Transmit Modes */
#define ANOMALY_05000191 (__SILICON_REVISION__ < 3)
/* In PPI Transmit Modes with External Frame Syncs POLC */
#define ANOMALY_05000192 (__SILICON_REVISION__ < 3)
/* Internal Voltage Regulator may not start up */
#define ANOMALY_05000206 (__SILICON_REVISION__ < 3)
/* Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled */
#define ANOMALY_05000357 (1)
/* PPI Underflow Error Goes Undetected in ITU-R 656 Mode */
#define ANOMALY_05000366 (1)
/* Possible RETS Register Corruption when Subroutine Is under 5 Cycles in Duration */
#define ANOMALY_05000371 (1)
/* Anomalies that don't exist on this proc */
#define ANOMALY_05000266 (0)
#define ANOMALY_05000323 (0)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
#endif