linux-stable-rt/arch/sh64/kernel/irq.c

116 lines
2.5 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* arch/sh64/kernel/irq.c
*
* Copyright (C) 2000, 2001 Paolo Alberelli
* Copyright (C) 2003 Paul Mundt
*
*/
/*
* IRQs are in fact implemented a bit like signal handlers for the kernel.
* Naturally it's not a 1:1 relation, but there are similarities.
*/
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/pgalloc.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <linux/irq.h>
void ack_bad_irq(unsigned int irq)
{
printk("unexpected IRQ trap at irq %02x\n", irq);
}
#if defined(CONFIG_PROC_FS)
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_puts(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto unlock;
seq_printf(p, "%3d: ",i);
seq_printf(p, "%10u ", kstat_irqs(i));
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 17:24:36 +08:00
seq_printf(p, " %14s", irq_desc[i].chip->typename);
seq_printf(p, " %s", action->name);
for (action=action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
unlock:
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
return 0;
}
#endif
/*
* do_NMI handles all Non-Maskable Interrupts.
*/
asmlinkage void do_NMI(unsigned long vector_num, struct pt_regs * regs)
{
if (regs->sr & 0x40000000)
printk("unexpected NMI trap in system mode\n");
else
printk("unexpected NMI trap in user mode\n");
/* No statistics */
}
/*
* do_IRQ handles all normal device IRQ's.
*/
asmlinkage int do_IRQ(unsigned long vector_num, struct pt_regs * regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
int irq;
irq_enter();
irq = irq_demux(vector_num);
if (irq >= 0) {
__do_IRQ(irq);
} else {
printk("unexpected IRQ trap at vector %03lx\n", vector_num);
}
irq_exit();
set_irq_regs(old_regs);
return 1;
}