linux-stable-rt/arch/blackfin/oprofile/op_blackfin.h

99 lines
2.4 KiB
C
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/*
* File: arch/blackfin/oprofile/op_blackfin.h
* Based on:
* Author: Anton Blanchard <anton@au.ibm.com>
*
* Created:
* Description:
*
* Modified:
* Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef OP_BLACKFIN_H
#define OP_BLACKFIN_H 1
#define OP_MAX_COUNTER 2
#include <asm/blackfin.h>
/* Per-counter configuration as set via oprofilefs. */
struct op_counter_config {
unsigned long valid;
unsigned long enabled;
unsigned long event;
unsigned long count;
unsigned long kernel;
unsigned long user;
unsigned long unit_mask;
};
/* System-wide configuration as set via oprofilefs. */
struct op_system_config {
unsigned long enable_kernel;
unsigned long enable_user;
};
/* Per-arch configuration */
struct op_bfin533_model {
int (*reg_setup) (struct op_counter_config *);
int (*start) (struct op_counter_config *);
void (*stop) (void);
int num_counters;
char *name;
};
extern struct op_bfin533_model op_model_bfin533;
static inline unsigned int ctr_read(void)
{
unsigned int tmp;
tmp = bfin_read_PFCTL();
__builtin_bfin_csync();
return tmp;
}
static inline void ctr_write(unsigned int val)
{
bfin_write_PFCTL(val);
__builtin_bfin_csync();
}
static inline void count_read(unsigned int *count)
{
count[0] = bfin_read_PFCNTR0();
count[1] = bfin_read_PFCNTR1();
__builtin_bfin_csync();
}
static inline void count_write(unsigned int *count)
{
bfin_write_PFCNTR0(count[0]);
bfin_write_PFCNTR1(count[1]);
__builtin_bfin_csync();
}
extern int pm_overflow_handler(int irq, struct pt_regs *regs);
#endif