221 lines
6.7 KiB
C
221 lines
6.7 KiB
C
|
/*
|
||
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation, version 2.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||
|
* NON INFRINGEMENT. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_TILE_SYSTEM_H
|
||
|
#define _ASM_TILE_SYSTEM_H
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/irqflags.h>
|
||
|
|
||
|
/* NOTE: we can't include <linux/ptrace.h> due to #include dependencies. */
|
||
|
#include <asm/ptrace.h>
|
||
|
|
||
|
#include <arch/chip.h>
|
||
|
#include <arch/sim_def.h>
|
||
|
#include <arch/spr_def.h>
|
||
|
|
||
|
/*
|
||
|
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||
|
* depend on.
|
||
|
*
|
||
|
* No data-dependent reads from memory-like regions are ever reordered
|
||
|
* over this barrier. All reads preceding this primitive are guaranteed
|
||
|
* to access memory (but not necessarily other CPUs' caches) before any
|
||
|
* reads following this primitive that depend on the data return by
|
||
|
* any of the preceding reads. This primitive is much lighter weight than
|
||
|
* rmb() on most CPUs, and is never heavier weight than is
|
||
|
* rmb().
|
||
|
*
|
||
|
* These ordering constraints are respected by both the local CPU
|
||
|
* and the compiler.
|
||
|
*
|
||
|
* Ordering is not guaranteed by anything other than these primitives,
|
||
|
* not even by data dependencies. See the documentation for
|
||
|
* memory_barrier() for examples and URLs to more information.
|
||
|
*
|
||
|
* For example, the following code would force ordering (the initial
|
||
|
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||
|
*
|
||
|
* <programlisting>
|
||
|
* CPU 0 CPU 1
|
||
|
*
|
||
|
* b = 2;
|
||
|
* memory_barrier();
|
||
|
* p = &b; q = p;
|
||
|
* read_barrier_depends();
|
||
|
* d = *q;
|
||
|
* </programlisting>
|
||
|
*
|
||
|
* because the read of "*q" depends on the read of "p" and these
|
||
|
* two reads are separated by a read_barrier_depends(). However,
|
||
|
* the following code, with the same initial values for "a" and "b":
|
||
|
*
|
||
|
* <programlisting>
|
||
|
* CPU 0 CPU 1
|
||
|
*
|
||
|
* a = 2;
|
||
|
* memory_barrier();
|
||
|
* b = 3; y = b;
|
||
|
* read_barrier_depends();
|
||
|
* x = a;
|
||
|
* </programlisting>
|
||
|
*
|
||
|
* does not enforce ordering, since there is no data dependency between
|
||
|
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||
|
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||
|
* in cases like this where there are no data dependencies.
|
||
|
*/
|
||
|
|
||
|
#define read_barrier_depends() do { } while (0)
|
||
|
|
||
|
#define __sync() __insn_mf()
|
||
|
|
||
|
#if CHIP_HAS_SPLIT_CYCLE()
|
||
|
#define get_cycles_low() __insn_mfspr(SPR_CYCLE_LOW)
|
||
|
#else
|
||
|
#define get_cycles_low() __insn_mfspr(SPR_CYCLE) /* just get all 64 bits */
|
||
|
#endif
|
||
|
|
||
|
/* Fence to guarantee visibility of stores to incoherent memory. */
|
||
|
static inline void
|
||
|
mb_incoherent(void)
|
||
|
{
|
||
|
__insn_mf();
|
||
|
|
||
|
#if !CHIP_HAS_MF_WAITS_FOR_VICTIMS()
|
||
|
{
|
||
|
int __mb_incoherent(void);
|
||
|
#if CHIP_HAS_TILE_WRITE_PENDING()
|
||
|
const unsigned long WRITE_TIMEOUT_CYCLES = 400;
|
||
|
unsigned long start = get_cycles_low();
|
||
|
do {
|
||
|
if (__insn_mfspr(SPR_TILE_WRITE_PENDING) == 0)
|
||
|
return;
|
||
|
} while ((get_cycles_low() - start) < WRITE_TIMEOUT_CYCLES);
|
||
|
#endif /* CHIP_HAS_TILE_WRITE_PENDING() */
|
||
|
(void) __mb_incoherent();
|
||
|
}
|
||
|
#endif /* CHIP_HAS_MF_WAITS_FOR_VICTIMS() */
|
||
|
}
|
||
|
|
||
|
#define fast_wmb() __sync()
|
||
|
#define fast_rmb() __sync()
|
||
|
#define fast_mb() __sync()
|
||
|
#define fast_iob() mb_incoherent()
|
||
|
|
||
|
#define wmb() fast_wmb()
|
||
|
#define rmb() fast_rmb()
|
||
|
#define mb() fast_mb()
|
||
|
#define iob() fast_iob()
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
#define smp_mb() mb()
|
||
|
#define smp_rmb() rmb()
|
||
|
#define smp_wmb() wmb()
|
||
|
#define smp_read_barrier_depends() read_barrier_depends()
|
||
|
#else
|
||
|
#define smp_mb() barrier()
|
||
|
#define smp_rmb() barrier()
|
||
|
#define smp_wmb() barrier()
|
||
|
#define smp_read_barrier_depends() do { } while (0)
|
||
|
#endif
|
||
|
|
||
|
#define set_mb(var, value) \
|
||
|
do { var = value; mb(); } while (0)
|
||
|
|
||
|
#include <linux/irqflags.h>
|
||
|
|
||
|
/*
|
||
|
* Pause the DMA engine and static network before task switching.
|
||
|
*/
|
||
|
#define prepare_arch_switch(next) _prepare_arch_switch(next)
|
||
|
void _prepare_arch_switch(struct task_struct *next);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* switch_to(n) should switch tasks to task nr n, first
|
||
|
* checking that n isn't the current task, in which case it does nothing.
|
||
|
* The number of callee-saved registers saved on the kernel stack
|
||
|
* is defined here for use in copy_thread() and must agree with __switch_to().
|
||
|
*/
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
#define CALLEE_SAVED_FIRST_REG 30
|
||
|
#define CALLEE_SAVED_REGS_COUNT 24 /* r30 to r52, plus an empty to align */
|
||
|
#ifndef __ASSEMBLY__
|
||
|
struct task_struct;
|
||
|
#define switch_to(prev, next, last) ((last) = _switch_to((prev), (next)))
|
||
|
extern struct task_struct *_switch_to(struct task_struct *prev,
|
||
|
struct task_struct *next);
|
||
|
|
||
|
/*
|
||
|
* On SMP systems, when the scheduler does migration-cost autodetection,
|
||
|
* it needs a way to flush as much of the CPU's caches as possible:
|
||
|
*
|
||
|
* TODO: fill this in!
|
||
|
*/
|
||
|
static inline void sched_cacheflush(void)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#define arch_align_stack(x) (x)
|
||
|
|
||
|
/*
|
||
|
* Is the kernel doing fixups of unaligned accesses? If <0, no kernel
|
||
|
* intervention occurs and SIGBUS is delivered with no data address
|
||
|
* info. If 0, the kernel single-steps the instruction to discover
|
||
|
* the data address to provide with the SIGBUS. If 1, the kernel does
|
||
|
* a fixup.
|
||
|
*/
|
||
|
extern int unaligned_fixup;
|
||
|
|
||
|
/* Is the kernel printing on each unaligned fixup? */
|
||
|
extern int unaligned_printk;
|
||
|
|
||
|
/* Number of unaligned fixups performed */
|
||
|
extern unsigned int unaligned_fixup_count;
|
||
|
|
||
|
/* User-level DMA management functions */
|
||
|
void grant_dma_mpls(void);
|
||
|
void restrict_dma_mpls(void);
|
||
|
|
||
|
|
||
|
/* Invoke the simulator "syscall" mechanism (see arch/tile/kernel/entry.S). */
|
||
|
extern int _sim_syscall(int syscall_num, ...);
|
||
|
#define sim_syscall(syscall_num, ...) \
|
||
|
_sim_syscall(SIM_CONTROL_SYSCALL + \
|
||
|
((syscall_num) << _SIM_CONTROL_OPERATOR_BITS), \
|
||
|
## __VA_ARGS__)
|
||
|
|
||
|
/*
|
||
|
* Kernel threads can check to see if they need to migrate their
|
||
|
* stack whenever they return from a context switch; for user
|
||
|
* threads, we defer until they are returning to user-space.
|
||
|
*/
|
||
|
#define finish_arch_switch(prev) do { \
|
||
|
if (unlikely((prev)->state == TASK_DEAD)) \
|
||
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT | \
|
||
|
((prev)->pid << _SIM_CONTROL_OPERATOR_BITS)); \
|
||
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_SWITCH | \
|
||
|
(current->pid << _SIM_CONTROL_OPERATOR_BITS)); \
|
||
|
if (current->mm == NULL && !kstack_hash && \
|
||
|
current_thread_info()->homecache_cpu != smp_processor_id()) \
|
||
|
homecache_migrate_kthread(); \
|
||
|
} while (0)
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#endif /* _ASM_TILE_SYSTEM_H */
|