linux-stable-rt/drivers/edac/edac_core.h

719 lines
22 KiB
C
Raw Normal View History

/*
* Defines, structures, APIs for edac_core module
*
* (C) 2007 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* NMI handling support added by
* Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
*
* Refactored for multi-source files:
* Doug Thompson <norsk5@xmission.com>
*
*/
#ifndef _EDAC_CORE_H_
#define _EDAC_CORE_H_
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/nmi.h>
#include <linux/rcupdate.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/platform_device.h>
#include <linux/sysdev.h>
#include <linux/workqueue.h>
#include <linux/version.h>
#define EDAC_MC_LABEL_LEN 31
#define EDAC_DEVICE_NAME_LEN 31
#define EDAC_ATTRIB_VALUE_LEN 15
#define MC_PROC_NAME_MAX_LEN 7
#if PAGE_SHIFT < 20
#define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
#else /* PAGE_SHIFT > 20 */
#define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
#endif
#define edac_printk(level, prefix, fmt, arg...) \
printk(level "EDAC " prefix ": " fmt, ##arg)
#define edac_mc_printk(mci, level, fmt, arg...) \
printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
#define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
/* edac_device printk */
#define edac_device_printk(ctl, level, fmt, arg...) \
printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
/* prefixes for edac_printk() and edac_mc_printk() */
#define EDAC_MC "MC"
#define EDAC_PCI "PCI"
#define EDAC_DEBUG "DEBUG"
#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;
#define edac_debug_printk(level, fmt, arg...) \
do { \
if (level <= edac_debug_level) \
edac_printk(KERN_EMERG, EDAC_DEBUG, fmt, ##arg); \
} while(0)
#define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
#define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
#define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
#define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
#define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
#else /* !CONFIG_EDAC_DEBUG */
#define debugf0( ... )
#define debugf1( ... )
#define debugf2( ... )
#define debugf3( ... )
#define debugf4( ... )
#endif /* !CONFIG_EDAC_DEBUG */
#define BIT(x) (1 << (x))
#define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
PCI_DEVICE_ID_ ## vend ## _ ## dev
#if defined(CONFIG_X86) && defined(CONFIG_PCI)
#define dev_name(dev) pci_name(to_pci_dev(dev))
#else
#define dev_name(dev) to_platform_device(dev)->name
#endif
/* memory devices */
enum dev_type {
DEV_UNKNOWN = 0,
DEV_X1,
DEV_X2,
DEV_X4,
DEV_X8,
DEV_X16,
DEV_X32, /* Do these parts exist? */
DEV_X64 /* Do these parts exist? */
};
#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
#define DEV_FLAG_X1 BIT(DEV_X1)
#define DEV_FLAG_X2 BIT(DEV_X2)
#define DEV_FLAG_X4 BIT(DEV_X4)
#define DEV_FLAG_X8 BIT(DEV_X8)
#define DEV_FLAG_X16 BIT(DEV_X16)
#define DEV_FLAG_X32 BIT(DEV_X32)
#define DEV_FLAG_X64 BIT(DEV_X64)
/* memory types */
enum mem_type {
MEM_EMPTY = 0, /* Empty csrow */
MEM_RESERVED, /* Reserved csrow type */
MEM_UNKNOWN, /* Unknown csrow type */
MEM_FPM, /* Fast page mode */
MEM_EDO, /* Extended data out */
MEM_BEDO, /* Burst Extended data out */
MEM_SDR, /* Single data rate SDRAM */
MEM_RDR, /* Registered single data rate SDRAM */
MEM_DDR, /* Double data rate SDRAM */
MEM_RDDR, /* Registered Double data rate SDRAM */
MEM_RMBS, /* Rambus DRAM */
MEM_DDR2, /* DDR2 RAM */
MEM_FB_DDR2, /* fully buffered DDR2 */
MEM_RDDR2, /* Registered DDR2 RAM */
};
#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
#define MEM_FLAG_FPM BIT(MEM_FPM)
#define MEM_FLAG_EDO BIT(MEM_EDO)
#define MEM_FLAG_BEDO BIT(MEM_BEDO)
#define MEM_FLAG_SDR BIT(MEM_SDR)
#define MEM_FLAG_RDR BIT(MEM_RDR)
#define MEM_FLAG_DDR BIT(MEM_DDR)
#define MEM_FLAG_RDDR BIT(MEM_RDDR)
#define MEM_FLAG_RMBS BIT(MEM_RMBS)
#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
/* chipset Error Detection and Correction capabilities and mode */
enum edac_type {
EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
EDAC_NONE, /* Doesnt support ECC */
EDAC_RESERVED, /* Reserved ECC type */
EDAC_PARITY, /* Detects parity errors */
EDAC_EC, /* Error Checking - no correction */
EDAC_SECDED, /* Single bit error correction, Double detection */
EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
EDAC_S4ECD4ED, /* Chipkill x4 devices */
EDAC_S8ECD8ED, /* Chipkill x8 devices */
EDAC_S16ECD16ED, /* Chipkill x16 devices */
};
#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
#define EDAC_FLAG_NONE BIT(EDAC_NONE)
#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
#define EDAC_FLAG_EC BIT(EDAC_EC)
#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
/* scrubbing capabilities */
enum scrub_type {
SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
SCRUB_NONE, /* No scrubber */
SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
SCRUB_SW_SRC, /* Software scrub only errors */
SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
SCRUB_HW_SRC, /* Hardware scrub only errors */
SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
};
#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC_CORR)
#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC_CORR)
#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC_CORR)
#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC_CORR)
#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
extern char * edac_align_ptr(void *ptr, unsigned size);
/*
* There are several things to be aware of that aren't at all obvious:
*
*
* SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
*
* These are some of the many terms that are thrown about that don't always
* mean what people think they mean (Inconceivable!). In the interest of
* creating a common ground for discussion, terms and their definitions
* will be established.
*
* Memory devices: The individual chip on a memory stick. These devices
* commonly output 4 and 8 bits each. Grouping several
* of these in parallel provides 64 bits which is common
* for a memory stick.
*
* Memory Stick: A printed circuit board that agregates multiple
* memory devices in parallel. This is the atomic
* memory component that is purchaseable by Joe consumer
* and loaded into a memory socket.
*
* Socket: A physical connector on the motherboard that accepts
* a single memory stick.
*
* Channel: Set of memory devices on a memory stick that must be
* grouped in parallel with one or more additional
* channels from other memory sticks. This parallel
* grouping of the output from multiple channels are
* necessary for the smallest granularity of memory access.
* Some memory controllers are capable of single channel -
* which means that memory sticks can be loaded
* individually. Other memory controllers are only
* capable of dual channel - which means that memory
* sticks must be loaded as pairs (see "socket set").
*
* Chip-select row: All of the memory devices that are selected together.
* for a single, minimum grain of memory access.
* This selects all of the parallel memory devices across
* all of the parallel channels. Common chip-select rows
* for single channel are 64 bits, for dual channel 128
* bits.
*
* Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
* Motherboards commonly drive two chip-select pins to
* a memory stick. A single-ranked stick, will occupy
* only one of those rows. The other will be unused.
*
* Double-Ranked stick: A double-ranked stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently.
*
* Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
* A double-sided stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently. "Double-sided"
* is irrespective of the memory devices being mounted
* on both sides of the memory stick.
*
* Socket set: All of the memory sticks that are required for for
* a single memory access or all of the memory sticks
* spanned by a chip-select row. A single socket set
* has two chip-select rows and if double-sided sticks
* are used these will occupy those chip-select rows.
*
* Bank: This term is avoided because it is unclear when
* needing to distinguish between chip-select rows and
* socket sets.
*
* Controller pages:
*
* Physical pages:
*
* Virtual pages:
*
*
* STRUCTURE ORGANIZATION AND CHOICES
*
*
*
* PS - I enjoyed writing all that about as much as you enjoyed reading it.
*/
struct channel_info {
int chan_idx; /* channel index */
u32 ce_count; /* Correctable Errors for this CHANNEL */
char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
struct csrow_info *csrow; /* the parent */
};
struct csrow_info {
unsigned long first_page; /* first page number in dimm */
unsigned long last_page; /* last page number in dimm */
unsigned long page_mask; /* used for interleaving -
* 0UL for non intlv
*/
u32 nr_pages; /* number of pages in csrow */
u32 grain; /* granularity of reported error in bytes */
int csrow_idx; /* the chip-select row */
enum dev_type dtype; /* memory device type */
u32 ue_count; /* Uncorrectable Errors for this csrow */
u32 ce_count; /* Correctable Errors for this csrow */
enum mem_type mtype; /* memory csrow type */
enum edac_type edac_mode; /* EDAC mode for this csrow */
struct mem_ctl_info *mci; /* the parent */
struct kobject kobj; /* sysfs kobject for this csrow */
struct completion kobj_complete;
/* FIXME the number of CHANNELs might need to become dynamic */
u32 nr_channels;
struct channel_info *channels;
};
struct mem_ctl_info {
struct list_head link; /* for global list of mem_ctl_info structs */
unsigned long mtype_cap; /* memory types supported by mc */
unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
unsigned long edac_cap; /* configuration capabilities - this is
* closely related to edac_ctl_cap. The
* difference is that the controller may be
* capable of s4ecd4ed which would be listed
* in edac_ctl_cap, but if channels aren't
* capable of s4ecd4ed then the edac_cap would
* not have that capability.
*/
unsigned long scrub_cap; /* chipset scrub capabilities */
enum scrub_type scrub_mode; /* current scrub mode */
/* Translates sdram memory scrub rate given in bytes/sec to the
internal representation and configures whatever else needs
to be configured.
*/
int (*set_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
/* Get the current sdram memory scrub rate from the internal
representation and converts it to the closest matching
bandwith in bytes/sec.
*/
int (*get_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
/* pointer to edac checking routine */
void (*edac_check) (struct mem_ctl_info * mci);
/*
* Remaps memory pages: controller pages to physical pages.
* For most MC's, this will be NULL.
*/
/* FIXME - why not send the phys page to begin with? */
unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
unsigned long page);
int mc_idx;
int nr_csrows;
struct csrow_info *csrows;
/*
* FIXME - what about controllers on other busses? - IDs must be
* unique. dev pointer should be sufficiently unique, but
* BUS:SLOT.FUNC numbers may not be unique.
*/
struct device *dev;
const char *mod_name;
const char *mod_ver;
const char *ctl_name;
char proc_name[MC_PROC_NAME_MAX_LEN + 1];
void *pvt_info;
u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
u32 ce_noinfo_count; /* Correctable Errors w/o info */
u32 ue_count; /* Total Uncorrectable Errors for this MC */
u32 ce_count; /* Total Correctable Errors for this MC */
unsigned long start_time; /* mci load start time (in jiffies) */
/* this stuff is for safe removal of mc devices from global list while
* NMI handlers may be traversing list
*/
struct rcu_head rcu;
struct completion complete;
/* edac sysfs device control */
struct kobject edac_mci_kobj;
struct completion kobj_complete;
};
/*
* The following are the structures to provide for a generice
* or abstract 'edac_device'. This set of structures and the
* code that implements the APIs for the same, provide for
* registering EDAC type devices which are NOT standard memory.
*
* CPU caches (L1 and L2)
* DMA engines
* Core CPU swithces
* Fabric switch units
* PCIe interface controllers
* other EDAC/ECC type devices that can be monitored for
* errors, etc.
*
* It allows for a 2 level set of hiearchry. For example:
*
* cache could be composed of L1, L2 and L3 levels of cache.
* Each CPU core would have its own L1 cache, while sharing
* L2 and maybe L3 caches.
*
* View them arranged, via the sysfs presentation:
* /sys/devices/system/edac/..
*
* mc/ <existing memory device directory>
* cpu/cpu0/.. <L1 and L2 block directory>
* /L1-cache/ce_count
* /ue_count
* /L2-cache/ce_count
* /ue_count
* cpu/cpu1/.. <L1 and L2 block directory>
* /L1-cache/ce_count
* /ue_count
* /L2-cache/ce_count
* /ue_count
* ...
*
* the L1 and L2 directories would be "edac_device_block's"
*/
struct edac_device_counter {
u32 ue_count;
u32 ce_count;
};
#define INC_COUNTER(cnt) (cnt++)
/*
* An array of these is passed to the alloc() function
* to specify attributes of the edac_block
*/
struct edac_attrib_spec {
char name[EDAC_DEVICE_NAME_LEN + 1];
int type;
#define EDAC_ATTR_INT 0x01
#define EDAC_ATTR_CHAR 0x02
};
/* Attribute control structure
* In this structure is a pointer to the driver's edac_attrib_spec
* The life of this pointer is inclusive in the life of the driver's
* life cycle.
*/
struct edac_attrib {
struct edac_device_block *block; /* Up Pointer */
struct edac_attrib_spec *spec; /* ptr to module spec entry */
union { /* actual value */
int edac_attrib_int_value;
char edac_attrib_char_value[EDAC_ATTRIB_VALUE_LEN + 1];
} edac_attrib_value;
};
/* device block control structure */
struct edac_device_block {
struct edac_device_instance *instance; /* Up Pointer */
char name[EDAC_DEVICE_NAME_LEN + 1];
struct edac_device_counter counters; /* basic UE and CE counters */
int nr_attribs; /* how many attributes */
struct edac_attrib *attribs; /* this block's attributes */
/* edac sysfs device control */
struct kobject kobj;
struct completion kobj_complete;
};
/* device instance control structure */
struct edac_device_instance {
struct edac_device_ctl_info *ctl; /* Up pointer */
char name[EDAC_DEVICE_NAME_LEN + 4];
struct edac_device_counter counters; /* instance counters */
u32 nr_blocks; /* how many blocks */
struct edac_device_block *blocks; /* block array */
/* edac sysfs device control */
struct kobject kobj;
struct completion kobj_complete;
};
/*
* Abstract edac_device control info structure
*
*/
struct edac_device_ctl_info {
/* for global list of edac_device_ctl_info structs */
struct list_head link;
int dev_idx;
/* Per instance controls for this edac_device */
int log_ue; /* boolean for logging UEs */
int log_ce; /* boolean for logging CEs */
int panic_on_ue; /* boolean for panic'ing on an UE */
unsigned poll_msec; /* number of milliseconds to poll interval */
unsigned long delay; /* number of jiffies for poll_msec */
struct sysdev_class *edac_class; /* pointer to class */
/* the internal state of this controller instance */
int op_state;
#define OP_ALLOC 0x100
#define OP_RUNNING_POLL 0x201
#define OP_RUNNING_INTERRUPT 0x202
#define OP_RUNNING_POLL_INTR 0x203
#define OP_OFFLINE 0x300
/* work struct for this instance */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
struct delayed_work work;
#else
struct work_struct work;
#endif
/* pointer to edac polling checking routine:
* If NOT NULL: points to polling check routine
* If NULL: Then assumes INTERRUPT operation, where
* MC driver will receive events
*/
void (*edac_check) (struct edac_device_ctl_info * edac_dev);
struct device *dev; /* pointer to device structure */
const char *mod_name; /* module name */
const char *ctl_name; /* edac controller name */
void *pvt_info; /* pointer to 'private driver' info */
unsigned long start_time;/* edac_device load start time (jiffies)*/
/* these are for safe removal of mc devices from global list while
* NMI handlers may be traversing list
*/
struct rcu_head rcu;
struct completion complete;
/* sysfs top name under 'edac' directory
* and instance name:
* cpu/cpu0/...
* cpu/cpu1/...
* cpu/cpu2/...
* ...
*/
char name[EDAC_DEVICE_NAME_LEN + 1];
/* Number of instances supported on this control structure
* and the array of those instances
*/
u32 nr_instances;
struct edac_device_instance *instances;
/* Event counters for the this whole EDAC Device */
struct edac_device_counter counters;
/* edac sysfs device control for the 'name'
* device this structure controls
*/
struct kobject kobj;
struct completion kobj_complete;
};
/* To get from the instance's wq to the beginning of the ctl structure */
#define to_edac_device_ctl_work(w) \
container_of(w,struct edac_device_ctl_info,work)
/* Function to calc the number of delay jiffies from poll_msec */
static inline void edac_device_calc_delay(
struct edac_device_ctl_info *edac_dev)
{
/* convert from msec to jiffies */
edac_dev->delay = edac_dev->poll_msec * HZ / 1000;
}
/*
* The alloc() and free() functions for the 'edac_device' control info
* structure. A MC driver will allocate one of these for each edac_device
* it is going to control/register with the EDAC CORE.
*/
extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
unsigned sizeof_private,
char *edac_device_name,
unsigned nr_instances,
char *edac_block_name,
unsigned nr_blocks,
unsigned offset_value,
struct edac_attrib_spec *attrib_spec,
unsigned nr_attribs
);
/* The offset value can be:
* -1 indicating no offset value
* 0 for zero-based block numbers
* 1 for 1-based block number
* other for other-based block number
*/
#define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
extern void edac_device_free_ctl_info( struct edac_device_ctl_info *ctl_info);
#ifdef CONFIG_PCI
/* write all or some bits in a byte-register*/
static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
u8 mask)
{
if (mask != 0xff) {
u8 buf;
pci_read_config_byte(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_byte(pdev, offset, value);
}
/* write all or some bits in a word-register*/
static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
u16 value, u16 mask)
{
if (mask != 0xffff) {
u16 buf;
pci_read_config_word(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_word(pdev, offset, value);
}
/* write all or some bits in a dword-register*/
static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
u32 value, u32 mask)
{
if (mask != 0xffff) {
u32 buf;
pci_read_config_dword(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_dword(pdev, offset, value);
}
#endif /* CONFIG_PCI */
extern struct mem_ctl_info * edac_mc_find(int idx);
extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
unsigned long page);
/*
* The no info errors are used when error overflows are reported.
* There are a limited number of error logging registers that can
* be exausted. When all registers are exhausted and an additional
* error occurs then an error overflow register records that an
* error occured and the type of error, but doesn't have any
* further information. The ce/ue versions make for cleaner
* reporting logic and function interface - reduces conditional
* statement clutter and extra function arguments.
*/
extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
unsigned long syndrome, int row, int channel,
const char *msg);
extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
const char *msg);
extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
int row, const char *msg);
extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
const char *msg);
extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
unsigned int csrow,
unsigned int channel0,
unsigned int channel1,
char *msg);
extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
unsigned int csrow,
unsigned int channel,
char *msg);
/*
* edac_device APIs
*/
extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
unsigned nr_chans);
extern void edac_mc_free(struct mem_ctl_info *mci);
extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev, int edac_idx);
extern struct edac_device_ctl_info * edac_device_del_device(struct device *dev);
extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg);
extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg);
#endif /* _EDAC_CORE_H_ */