linux-stable-rt/arch/mips/cavium-octeon/executive/cvmx-helper-errata.c

71 lines
2.4 KiB
C
Raw Normal View History

/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
/**
*
* Fixes and workaround for Octeon chip errata. This file
* contains functions called by cvmx-helper to workaround known
* chip errata. For the most part, code doesn't need to call
* these functions directly.
*
*/
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper-jtag.h>
/**
* Due to errata G-720, the 2nd order CDR circuit on CN52XX pass
* 1 doesn't work properly. The following code disables 2nd order
* CDR for the specified QLM.
*
* @qlm: QLM to disable 2nd order CDR for.
*/
void __cvmx_helper_errata_qlm_disable_2nd_order_cdr(int qlm)
{
int lane;
cvmx_helper_qlm_jtag_init();
/* We need to load all four lanes of the QLM, a total of 1072 bits */
for (lane = 0; lane < 4; lane++) {
/*
* Each lane has 268 bits. We need to set
* cfg_cdr_incx<67:64> = 3 and cfg_cdr_secord<77> =
* 1. All other bits are zero. Bits go in LSB first,
* so start off with the zeros for bits <63:0>.
*/
cvmx_helper_qlm_jtag_shift_zeros(qlm, 63 - 0 + 1);
/* cfg_cdr_incx<67:64>=3 */
cvmx_helper_qlm_jtag_shift(qlm, 67 - 64 + 1, 3);
/* Zeros for bits <76:68> */
cvmx_helper_qlm_jtag_shift_zeros(qlm, 76 - 68 + 1);
/* cfg_cdr_secord<77>=1 */
cvmx_helper_qlm_jtag_shift(qlm, 77 - 77 + 1, 1);
/* Zeros for bits <267:78> */
cvmx_helper_qlm_jtag_shift_zeros(qlm, 267 - 78 + 1);
}
cvmx_helper_qlm_jtag_update(qlm);
}