blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
/*
|
|
|
|
* File: arch/blackfin/mm/blackfin_sram.c
|
|
|
|
* Based on:
|
|
|
|
* Author:
|
|
|
|
*
|
|
|
|
* Created:
|
|
|
|
* Description: SRAM driver for Blackfin ADSP-BF5xx
|
|
|
|
*
|
|
|
|
* Modified:
|
2007-06-11 15:31:30 +08:00
|
|
|
* Copyright 2004-2007 Analog Devices Inc.
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
*
|
|
|
|
* Bugs: Enter bugs at http://blackfin.uclinux.org/
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, see the file COPYING, or write
|
|
|
|
* to the Free Software Foundation, Inc.,
|
|
|
|
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/miscdevice.h>
|
|
|
|
#include <linux/ioport.h>
|
|
|
|
#include <linux/fcntl.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/poll.h>
|
|
|
|
#include <linux/proc_fs.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/rtc.h>
|
|
|
|
#include <asm/blackfin.h>
|
|
|
|
#include "blackfin_sram.h"
|
|
|
|
|
|
|
|
spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
|
|
|
|
|
|
|
|
#if CONFIG_L1_MAX_PIECE < 16
|
|
|
|
#undef CONFIG_L1_MAX_PIECE
|
|
|
|
#define CONFIG_L1_MAX_PIECE 16
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if CONFIG_L1_MAX_PIECE > 1024
|
|
|
|
#undef CONFIG_L1_MAX_PIECE
|
|
|
|
#define CONFIG_L1_MAX_PIECE 1024
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define SRAM_SLT_NULL 0
|
|
|
|
#define SRAM_SLT_FREE 1
|
|
|
|
#define SRAM_SLT_ALLOCATED 2
|
|
|
|
|
|
|
|
/* the data structure for L1 scratchpad and DATA SRAM */
|
|
|
|
struct l1_sram_piece {
|
|
|
|
void *paddr;
|
|
|
|
int size;
|
|
|
|
int flag;
|
2007-06-14 13:21:08 +08:00
|
|
|
pid_t pid;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
|
|
|
|
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
|
|
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* L1 Scratchpad SRAM initialization function */
|
2007-06-11 15:31:30 +08:00
|
|
|
void __init l1sram_init(void)
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
{
|
|
|
|
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
|
|
|
|
L1_SCRATCH_LENGTH >> 10);
|
|
|
|
|
|
|
|
memset(&l1_ssram, 0x00, sizeof(l1_ssram));
|
2007-07-12 22:58:21 +08:00
|
|
|
l1_ssram[0].paddr = (void *)L1_SCRATCH_START;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
l1_ssram[0].size = L1_SCRATCH_LENGTH;
|
|
|
|
l1_ssram[0].flag = SRAM_SLT_FREE;
|
|
|
|
|
|
|
|
/* mutex initialize */
|
|
|
|
spin_lock_init(&l1sram_lock);
|
|
|
|
}
|
|
|
|
|
2007-06-11 15:31:30 +08:00
|
|
|
void __init l1_data_sram_init(void)
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
{
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
|
2007-06-14 13:21:08 +08:00
|
|
|
l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
|
|
|
|
(_ebss_l1 - _sdata_l1);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
|
|
|
|
l1_data_A_sram[0].flag = SRAM_SLT_FREE;
|
2007-06-14 13:21:08 +08:00
|
|
|
|
|
|
|
printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
|
|
|
|
L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
#endif
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
|
2007-06-14 13:33:37 +08:00
|
|
|
l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START +
|
|
|
|
(_ebss_b_l1 - _sdata_b_l1);
|
|
|
|
l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
l1_data_B_sram[0].flag = SRAM_SLT_FREE;
|
2007-06-14 13:21:08 +08:00
|
|
|
|
|
|
|
printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
|
|
|
|
L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/* mutex initialize */
|
|
|
|
spin_lock_init(&l1_data_sram_lock);
|
|
|
|
}
|
|
|
|
|
2007-06-11 15:31:30 +08:00
|
|
|
void __init l1_inst_sram_init(void)
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
{
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
|
|
memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
|
2007-07-12 22:58:21 +08:00
|
|
|
l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
|
|
|
|
l1_inst_sram[0].flag = SRAM_SLT_FREE;
|
2007-06-14 13:21:08 +08:00
|
|
|
|
|
|
|
printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
|
|
|
|
L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/* mutex initialize */
|
|
|
|
spin_lock_init(&l1_inst_sram_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* L1 memory allocate function */
|
|
|
|
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
|
|
|
|
{
|
|
|
|
int i, index = 0;
|
|
|
|
void *addr = NULL;
|
|
|
|
|
|
|
|
if (size <= 0)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* Align the size */
|
|
|
|
size = (size + 3) & ~3;
|
|
|
|
|
|
|
|
/* not use the good method to match the best slot !!! */
|
2007-06-11 15:31:30 +08:00
|
|
|
/* search an available memory slot */
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if ((pfree[i].flag == SRAM_SLT_FREE)
|
|
|
|
&& (pfree[i].size >= size)) {
|
|
|
|
addr = pfree[i].paddr;
|
|
|
|
pfree[i].flag = SRAM_SLT_ALLOCATED;
|
2007-06-14 13:21:08 +08:00
|
|
|
pfree[i].pid = current->pid;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
index = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (i >= count)
|
|
|
|
return NULL;
|
|
|
|
|
2007-06-11 15:31:30 +08:00
|
|
|
/* updated the NULL memory slot !!! */
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
if (pfree[i].size > size) {
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (pfree[i].flag == SRAM_SLT_NULL) {
|
2007-06-14 13:21:08 +08:00
|
|
|
pfree[i].pid = 0;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
pfree[i].flag = SRAM_SLT_FREE;
|
|
|
|
pfree[i].paddr = addr + size;
|
|
|
|
pfree[i].size = pfree[index].size - size;
|
|
|
|
pfree[index].size = size;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate the largest available block. */
|
|
|
|
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
|
|
|
|
unsigned long *psize)
|
|
|
|
{
|
|
|
|
unsigned long best = 0;
|
|
|
|
int i, index = -1;
|
|
|
|
void *addr = NULL;
|
|
|
|
|
2007-06-11 15:31:30 +08:00
|
|
|
/* search an available memory slot */
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
|
|
|
|
addr = pfree[i].paddr;
|
|
|
|
index = i;
|
|
|
|
best = pfree[i].size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (index < 0)
|
|
|
|
return NULL;
|
|
|
|
*psize = best;
|
|
|
|
|
2007-06-14 13:21:08 +08:00
|
|
|
pfree[index].pid = current->pid;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
pfree[index].flag = SRAM_SLT_ALLOCATED;
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* L1 memory free function */
|
|
|
|
static int _l1_sram_free(const void *addr,
|
2007-06-14 13:21:08 +08:00
|
|
|
struct l1_sram_piece *pfree,
|
|
|
|
int count)
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
{
|
|
|
|
int i, index = 0;
|
|
|
|
|
|
|
|
/* search the relevant memory slot */
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (pfree[i].paddr == addr) {
|
|
|
|
if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
|
|
|
|
/* error log */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
index = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (i >= count)
|
|
|
|
return -1;
|
|
|
|
|
2007-06-14 13:21:08 +08:00
|
|
|
pfree[index].pid = 0;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
pfree[index].flag = SRAM_SLT_FREE;
|
|
|
|
|
|
|
|
/* link the next address slot */
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
|
|
|
|
&& (pfree[i].flag == SRAM_SLT_FREE)) {
|
2007-06-14 13:21:08 +08:00
|
|
|
pfree[i].pid = 0;
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
pfree[i].flag = SRAM_SLT_NULL;
|
|
|
|
pfree[index].size += pfree[i].size;
|
|
|
|
pfree[index].flag = SRAM_SLT_FREE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* link the last address slot */
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
|
|
|
|
(pfree[i].flag == SRAM_SLT_FREE)) {
|
|
|
|
pfree[index].flag = SRAM_SLT_NULL;
|
|
|
|
pfree[i].size += pfree[index].size;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
if (0) {}
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
|
|
else if (addr >= (void *)L1_CODE_START
|
|
|
|
&& addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
|
|
|
|
return l1_inst_sram_free(addr);
|
|
|
|
#endif
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
else if (addr >= (void *)L1_DATA_A_START
|
|
|
|
&& addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
|
|
|
|
return l1_data_A_sram_free(addr);
|
|
|
|
#endif
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
else if (addr >= (void *)L1_DATA_B_START
|
|
|
|
&& addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
|
|
|
|
return l1_data_B_sram_free(addr);
|
|
|
|
#endif
|
|
|
|
else
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(sram_free);
|
|
|
|
|
|
|
|
void *l1_data_A_sram_alloc(size_t size)
|
|
|
|
{
|
|
|
|
unsigned flags;
|
|
|
|
void *addr = NULL;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
|
|
|
|
(long unsigned int)addr, size);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_A_sram_alloc);
|
|
|
|
|
|
|
|
int l1_data_A_sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
unsigned flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
ret = _l1_sram_free(addr,
|
|
|
|
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
|
|
#else
|
|
|
|
ret = -1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_A_sram_free);
|
|
|
|
|
|
|
|
void *l1_data_B_sram_alloc(size_t size)
|
|
|
|
{
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
unsigned flags;
|
|
|
|
void *addr;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
|
|
|
|
(long unsigned int)addr, size);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
#else
|
|
|
|
return NULL;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_B_sram_alloc);
|
|
|
|
|
|
|
|
int l1_data_B_sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
unsigned flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
#else
|
|
|
|
return -1;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_B_sram_free);
|
|
|
|
|
|
|
|
void *l1_data_sram_alloc(size_t size)
|
|
|
|
{
|
|
|
|
void *addr = l1_data_A_sram_alloc(size);
|
|
|
|
|
|
|
|
if (!addr)
|
|
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_sram_alloc);
|
|
|
|
|
|
|
|
void *l1_data_sram_zalloc(size_t size)
|
|
|
|
{
|
|
|
|
void *addr = l1_data_sram_alloc(size);
|
|
|
|
|
|
|
|
if (addr)
|
|
|
|
memset(addr, 0x00, size);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_sram_zalloc);
|
|
|
|
|
|
|
|
int l1_data_sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
ret = l1_data_A_sram_free(addr);
|
|
|
|
if (ret == -1)
|
|
|
|
ret = l1_data_B_sram_free(addr);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_data_sram_free);
|
|
|
|
|
|
|
|
void *l1_inst_sram_alloc(size_t size)
|
|
|
|
{
|
2008-04-23 08:55:26 +08:00
|
|
|
#if L1_CODE_LENGTH != 0
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
unsigned flags;
|
|
|
|
void *addr;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
|
|
|
|
|
|
|
addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
|
|
|
|
|
|
|
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
|
|
|
|
(long unsigned int)addr, size);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
#else
|
|
|
|
return NULL;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_inst_sram_alloc);
|
|
|
|
|
|
|
|
int l1_inst_sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
|
|
unsigned flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
|
|
|
|
|
|
|
ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
#else
|
|
|
|
return -1;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(l1_inst_sram_free);
|
|
|
|
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
|
|
void *l1sram_alloc(size_t size)
|
|
|
|
{
|
|
|
|
unsigned flags;
|
|
|
|
void *addr;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
|
|
void *l1sram_alloc_max(size_t *psize)
|
|
|
|
{
|
|
|
|
unsigned flags;
|
|
|
|
void *addr;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* L1 Scratchpad memory free function */
|
|
|
|
int l1sram_free(const void *addr)
|
|
|
|
{
|
|
|
|
unsigned flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
|
|
|
|
|
|
/* add mutex operation */
|
|
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int sram_free_with_lsl(const void *addr)
|
|
|
|
{
|
|
|
|
struct sram_list_struct *lsl, **tmp;
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
|
|
|
|
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
|
|
|
|
if ((*tmp)->addr == addr)
|
|
|
|
goto found;
|
|
|
|
return -1;
|
|
|
|
found:
|
|
|
|
lsl = *tmp;
|
|
|
|
sram_free(addr);
|
|
|
|
*tmp = lsl->next;
|
|
|
|
kfree(lsl);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(sram_free_with_lsl);
|
|
|
|
|
|
|
|
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
|
|
|
|
{
|
|
|
|
void *addr = NULL;
|
|
|
|
struct sram_list_struct *lsl = NULL;
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
|
some kmalloc/memset ->kzalloc (tree wide)
Transform some calls to kmalloc/memset to a single kzalloc (or kcalloc).
Here is a short excerpt of the semantic patch performing
this transformation:
@@
type T2;
expression x;
identifier f,fld;
expression E;
expression E1,E2;
expression e1,e2,e3,y;
statement S;
@@
x =
- kmalloc
+ kzalloc
(E1,E2)
... when != \(x->fld=E;\|y=f(...,x,...);\|f(...,x,...);\|x=E;\|while(...) S\|for(e1;e2;e3) S\)
- memset((T2)x,0,E1);
@@
expression E1,E2,E3;
@@
- kzalloc(E1 * E2,E3)
+ kcalloc(E1,E2,E3)
[akpm@linux-foundation.org: get kcalloc args the right way around]
Signed-off-by: Yoann Padioleau <padator@wanadoo.fr>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Acked-by: Russell King <rmk@arm.linux.org.uk>
Cc: Bryan Wu <bryan.wu@analog.com>
Acked-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Dave Airlie <airlied@linux.ie>
Acked-by: Roland Dreier <rolandd@cisco.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Mauro Carvalho Chehab <mchehab@infradead.org>
Acked-by: Pierre Ossman <drzeus-list@drzeus.cx>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg KH <greg@kroah.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 16:49:03 +08:00
|
|
|
lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
|
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
|
|
|
if (!lsl)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (flags & L1_INST_SRAM)
|
|
|
|
addr = l1_inst_sram_alloc(size);
|
|
|
|
|
|
|
|
if (addr == NULL && (flags & L1_DATA_A_SRAM))
|
|
|
|
addr = l1_data_A_sram_alloc(size);
|
|
|
|
|
|
|
|
if (addr == NULL && (flags & L1_DATA_B_SRAM))
|
|
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
|
|
|
|
if (addr == NULL) {
|
|
|
|
kfree(lsl);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
lsl->addr = addr;
|
|
|
|
lsl->length = size;
|
|
|
|
lsl->next = mm->context.sram_list;
|
|
|
|
mm->context.sram_list = lsl;
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(sram_alloc_with_lsl);
|
2007-06-14 13:21:08 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
/* Once we get a real allocator, we'll throw all of this away.
|
|
|
|
* Until then, we need some sort of visibility into the L1 alloc.
|
|
|
|
*/
|
|
|
|
static void _l1sram_proc_read(char *buf, int *len, const char *desc,
|
|
|
|
struct l1_sram_piece *pfree, const int array_size)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
*len += sprintf(&buf[*len], "--- L1 %-14s Size PID State\n", desc);
|
|
|
|
for (i = 0; i < array_size; ++i) {
|
|
|
|
const char *alloc_type;
|
|
|
|
switch (pfree[i].flag) {
|
|
|
|
case SRAM_SLT_NULL: alloc_type = "NULL"; break;
|
|
|
|
case SRAM_SLT_FREE: alloc_type = "FREE"; break;
|
|
|
|
case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
|
|
|
|
default: alloc_type = "????"; break;
|
|
|
|
}
|
|
|
|
*len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",
|
|
|
|
pfree[i].paddr, pfree[i].paddr + pfree[i].size,
|
|
|
|
pfree[i].size, pfree[i].pid, alloc_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
|
|
|
|
int *eof, void *data)
|
|
|
|
{
|
|
|
|
int len = 0;
|
|
|
|
|
|
|
|
_l1sram_proc_read(buf, &len, "Scratchpad",
|
|
|
|
l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
|
|
_l1sram_proc_read(buf, &len, "Data A",
|
|
|
|
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
|
|
#endif
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
|
|
_l1sram_proc_read(buf, &len, "Data B",
|
|
|
|
l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
|
|
#endif
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
|
|
_l1sram_proc_read(buf, &len, "Instruction",
|
|
|
|
l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init l1sram_proc_init(void)
|
|
|
|
{
|
|
|
|
struct proc_dir_entry *ptr;
|
|
|
|
ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
|
|
|
|
if (!ptr) {
|
|
|
|
printk(KERN_WARNING "unable to create /proc/sram\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
ptr->owner = THIS_MODULE;
|
|
|
|
ptr->read_proc = l1sram_proc_read;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
late_initcall(l1sram_proc_init);
|
|
|
|
#endif
|