prefill_possible_map() is defined inside CONFIG_HOTPLUG_CPU,
so the nesting CONFIG_HOTPLUG_CPU is just redundant.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Comments in arch/x86/boot/compressed/head_32.S erroneously refer to the
real mode pointer as the second and the heap area as the third argument
to decompress_kernel(). In fact, these have been the first and second
argument, respectively, since v2.6.20.
This patch corrects the comments. It introduces no code changes.
Signed-off-by: Philipp Kohlbecher <xt28@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WARNING: vmlinux.o(.text+0x118f7): Section mismatch in reference from the function construct_ioapic_table() to the function .init.text:MP_bus_info()
The function construct_ioapic_table() references
the function __init MP_bus_info().
This is often because construct_ioapic_table lacks a __init
annotation or the annotation of MP_bus_info is wrong.
construct_ioapic_table is called only from construct_default_ISA_mptable which is __init
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
WARNING: arch/x86/kernel/built-in.o(.cpuinit.text+0x1591): Section mismatch in reference from the function init_amd() to the function .init.text:check_enable_amd_mmconf_dmi()
The function __cpuinit init_amd() references
a function __init check_enable_amd_mmconf_dmi().
If check_enable_amd_mmconf_dmi is only used by init_amd then
annotate check_enable_amd_mmconf_dmi with a matching annotation.
check_enable_amd_mmconf_dmi is only called from init_amd which is __cpuinit
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
WARNING: arch/x86/kernel/built-in.o(.cpuinit.text+0x1fe7): Section mismatch in reference from the function MP_processor_info() to the variable .init.data:x86_quirks
The function __cpuinit MP_processor_info() references
a variable __initdata x86_quirks.
If x86_quirks is only used by MP_processor_info then
annotate x86_quirks with a matching annotation.
MP_processor_info uses x86_quirks which is __init and is used only from
smp_read_mpc and construct_default_ISA_mptable which are __init
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
WARNING: vmlinux.o(.text+0x7950): Section mismatch in reference from the function native_calibrate_tsc() to the function .init.text:tsc_read_refs()
The function native_calibrate_tsc() references
the function __init tsc_read_refs().
This is often because native_calibrate_tsc lacks a __init
annotation or the annotation of tsc_read_refs is wrong.
tsc_read_refs is called from native_calibrate_tsc which is not __init
and native_calibrate_tsc cannot be marked __init
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This patch provides support for the _PSD ACPI object in the Powernow-k8
driver. Although it looks like an invasive patch, most of it is
simply the consequence of turning the static acpi_performance_data
structure into a pointer.
AMD has tested it on several machines over the past few days without issue.
[trivial checkpatch warnings fixed up by davej]
[X86_POWERNOW_K8_ACPI=n buildfix from Randy Dunlap]
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Tested-by: Frank Arnold <frank.arnold@amd.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Dave Jones <davej@redhat.com>
arch/x86/kernel/cpu/cpufreq/elanfreq.c:47:26: warning: symbol 'elan_multiplier' was not declared. Should it be static?
Yes, yes it should.
Signed-off-by: Dave Jones <davej@redhat.com>
* 'kvm-updates-2.6.27' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm:
KVM: s390: Fix kvm on IBM System z10
KVM: Advertise synchronized mmu support to userspace
KVM: Synchronize guest physical memory map to host virtual memory map
KVM: Allow browsing memslots with mmu_lock
KVM: Allow reading aliases with mmu_lock
Fix all errors and many warnings reported by checkpatch.pl
without change sys_x86_64.o
arch/x86/kernel/sys_x86_64.o:
text data bss dec hex filename
1567 0 0 1567 61f sys_x86_64.o.after
1567 0 0 1567 61f sys_x86_64.o.before
md5:
de28ffedcb5851dfd7ec87a03afec1fd sys_x86_64.o.after
de28ffedcb5851dfd7ec87a03afec1fd sys_x86_64.o.before
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix all errors and many warnings reported by checkpath.pl.
Except the change of include <asm/io.h> to <linux/io.h>
the traps.o before and after changes are the same.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix all errors and many warnings reported by checkpatch.pl
without change signal_64.o
arch/x86/kernel/signal_64.o
text data bss dec hex filename
5143 0 8 5151 141f signal_64.o.after
5143 0 8 5151 141f signal_64.o.before
md5:
e68718092b3641cb27e79e55ce57e3ad signal_64.o.after
e68718092b3641cb27e79e55ce57e3ad signal_64.o.before
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
New ALIGN_DESTINATION macro has sad typo: r8d register was used instead
of ecx in fixup section. This can be considered as a regression.
Register ecx was also wrongly loaded with value in r8d in
copy_user_nocache routine.
Signed-off-by: Vitaly Mayatskikh <v.mayatskih@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Exports needed by the GRU driver.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This IOMMU helper function doesn't work for some architectures:
http://marc.info/?l=linux-kernel&m=121699304403202&w=2
It also breaks POWER and SPARC builds:
http://marc.info/?l=linux-kernel&m=121730388001890&w=2
Currently, only x86 IOMMUs use this so let's move it to x86 for
now.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Synchronize changes to host virtual addresses which are part of
a KVM memory slot to the KVM shadow mmu. This allows pte operations
like swapping, page migration, and madvise() to transparently work
with KVM.
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This allows reading memslots with only the mmu_lock hold for mmu
notifiers that runs in atomic context and with mmu_lock held.
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This allows the mmu notifier code to run unalias_gfn with only the
mmu_lock held. Only alias writes need the mmu_lock held. Readers will
either take the slots_lock in read mode or the mmu_lock.
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
lguest: turn Waker into a thread, not a process
lguest: Enlarge virtio rings
lguest: Use GSO/IFF_VNET_HDR extensions on tun/tap
lguest: Remove 'network: no dma buffer!' warning
lguest: Adaptive timeout
lguest: Tell Guest net not to notify us on every packet xmit
lguest: net block unneeded receive queue update notifications
lguest: wrap last_avail accesses.
lguest: use cpu capability accessors
lguest: virtio-rng support
lguest: Support assigning a MAC address
lguest: Don't leak /dev/zero fd
lguest: fix verbose printing of device features.
lguest: fix switcher_page leak on unload
lguest: Guest int3 fix
lguest: set max_pfn_mapped, growl loudly at Yinghai Lu
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: use dev_printk when possible
PCI: add D3 power state avoidance quirk
PCI: fix bogus "'device' may be used uninitialized" warning in pci_slot
PCI: add an option to allow ASPM enabled forcibly
PCI: disable ASPM on pre-1.1 PCIe devices
PCI: disable ASPM per ACPI FADT setting
PCI MSI: Don't disable MSIs if the mask bit isn't supported
PCI: handle 64-bit resources better on 32-bit machines
PCI: rewrite PCI BAR reading code
PCI: document pci_target_state
PCI hotplug: fix typo in pcie hotplug output
x86 gart: replace to_pages macro with iommu_num_pages
x86, AMD IOMMU: replace to_pages macro with iommu_num_pages
iommu: add iommu_num_pages helper function
dma-coherent: add documentation to new interfaces
Cris: convert to using generic dma-coherent mem allocator
Sh: use generic per-device coherent dma allocator
ARM: support generic per-device coherent dma mem
Generic dma-coherent: fix DMA_MEMORY_EXCLUSIVE
x86: use generic per-device dma coherent allocator
...
Alexey Dobriyan reported trouble with LTP with the new fast-gup code,
and Johannes Weiner debugged it to non-page-aligned addresses, where the
new get_user_pages_fast() code would do all the wrong things, including
just traversing past the end of the requested area due to 'addr' never
matching 'end' exactly.
This is not a pretty fix, and we may actually want to move the alignment
into generic code, leaving just the core code per-arch, but Alexey
verified that the vmsplice01 LTP test doesn't crash with this.
Reported-and-tested-by: Alexey Dobriyan <adobriyan@gmail.com>
Debugged-by: Johannes Weiner <hannes@saeurebad.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
6af61a7614 'x86: clean up max_pfn_mapped
usage - 32-bit' makes the following comment:
XEN PV and lguest may need to assign max_pfn_mapped too.
But no CC. Yinghai, wasting fellow developers' time is a VERY bad
habit. If you do it again, I will hunt you down and try to extract
the three hours of my life I just lost :)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert printks to use dev_printk().
I converted DBG() to dev_dbg(). This DBG() is from arch/x86/pci/pci.h and
requires source-code modification to enable, so dev_dbg() seems roughly
equivalent.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 3e9704739d ("x86: boot secondary
cpus through initial_code") causes the kernel to crash when a CPU is
brought online after the read only sections have been write
protected. The write to initial_code in do_boot_cpu() fails.
Move inital_code to .cpuinit.data section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>