o Kdump second kernel boot fails after a system crash if second kernel
is UP and acpi=off and if crash occurred on a non-boot cpu.
o Issue here is that MP tables report boot cpu lapic id as 0 but second
kernel is booting on a different processor and MP table data is stale
in this context. Hence apic_id_registered() check fails in setup_local_APIC()
when called from APIC_init_uniprocessor().
o Problem is not seen if ACPI is enabled as in that case
boot_cpu_physical_apicid is read from the LAPIC.
o Problem is not seen with SMP kernels as well because in this case also
boot_cpu_physical_apicid is read from LAPIC. (smp_boot_cpus()).
o The problem is fixed by reading boot_cpu_physical_apicid from LAPIC
if it is a UP kernel and CRASH_DUMP is enabled.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The apic= option can be used to set the APIC driver too. When that is done
this code would always produce bogus warnings.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
AMD systems have a modern APIC that supports 8 bit IDs, but
don't have a XAPIC version number. Add a new "modern_apic"
subfunction that handles this correctly and use it (nearly)
everywhere where XAPIC is tested for.
I removed one wart: the code specified that external APICs
would use an 8bit APIC ID. But I checked a real 82093 data sheet
and it says clearly that they only use 4bit. So I removed
this special case since it would a bit awkward to implement now.
I removed the valid APIC tests in mptable parsing completely. On any modern
system they only check against the full field width (8bit) anyways
and are no-ops. This also fixes them doing the wrong thing
on >8 core Opterons.
This makes i386 boot again on 16 core Opterons.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The boot cmdline is parsed in parse_early_param() and
parse_args(,unknown_bootoption).
And __setup() is used in obsolete_checksetup().
start_kernel()
-> parse_args()
-> unknown_bootoption()
-> obsolete_checksetup()
If __setup()'s callback (->setup_func()) returns 1 in
obsolete_checksetup(), obsolete_checksetup() thinks a parameter was
handled.
If ->setup_func() returns 0, obsolete_checksetup() tries other
->setup_func(). If all ->setup_func() that matched a parameter returns 0,
a parameter is seted to argv_init[].
Then, when runing /sbin/init or init=app, argv_init[] is passed to the app.
If the app doesn't ignore those arguments, it will warning and exit.
This patch fixes a wrong usage of it, however fixes obvious one only.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Porting the patch I posted for x86_64 to i386.
http://marc.theaimsgroup.com/?l=linux-kernel&m=114178139610707&w=2
o While using kdump, after a system crash when second kernel boots, timer
vector gets (0x31) locked and CPU does not see timer interrupts
travelling from IOAPIC to APIC. Currently it does not lead to boot
failure in second kernel as timer interrupts continues to come as ExtInt
through LAPIC directly, but fixing it is good in case some boards do not
support the other mode.
o After a system crash, it is not safe to service interrupts any more,
hence interrupts are disabled. This leads to pending interrupts at
LAPIC. LAPIC sends these interrupts to the CPU during early boot of
second kernel. Other pending interrupts are discarded saying unexpected
trap but timer interrupt is serviced and CPU does not issue an LAPIC EOI
because it think this interrupt came from i8259 and sends ack to 8259.
This leads to vector 0x31 locking as LAPIC does not clear respective ISR
and keeps on waiting for EOI.
o This patch issues extra EOI for the pending interrupts who have ISR set.
o Though today only timer seems to be the special case because in early
boot it thinks interrupts are coming from i8259 and uses
mask_and_ack_8259A() as ack handler and does not issue LAPIC EOI. But
probably doing it in generic manner for all vectors makes sense.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
lapic_shutdown() re-enables interrupts which is un-desirable for panic
case, so use local_irq_save() and local_irq_restore() to keep the irqs
disabled for kexec on panic case, and close a possible race window while
kdump shutdown as shown in this stack trace
-- BUG: spinlock lockup on CPU#1, bash/4396, c52781a0
[<c01c1870>] _raw_spin_lock+0xb7/0xd2
[<c029e148>] _spin_lock+0x6/0x8
[<c011b33f>] scheduler_tick+0xe7/0x328
[<c0128a7c>] update_process_times+0x51/0x5d
[<c0114592>] smp_apic_timer_interrupt+0x4f/0x58
[<c01141ff>] lapic_shutdown+0x76/0x7e
[<c0104d7c>] apic_timer_interrupt+0x1c/0x30
[<c01141ff>] lapic_shutdown+0x76/0x7e
[<c0116659>] machine_crash_shutdown+0x83/0xaa
[<c013cc36>] crash_kexec+0xc1/0xe3
[<c029e148>] _spin_lock+0x6/0x8
[<c013cc22>] crash_kexec+0xad/0xe3
[<c0215280>] __handle_sysrq+0x84/0xfd
[<c018d937>] write_sysrq_trigger+0x2c/0x35
[<c015e47b>] vfs_write+0xa2/0x13b
[<c015ea73>] sys_write+0x3b/0x64
[<c0103c69>] syscall_call+0x7/0xb
Signed-off-by: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix wrong '!' in bad apic fix
I forgot to remove the ! when moving the code from x86-64 to i386 x86-64
tested !disable_apic, but of course for cpu_has_apic it shouldn't be
negated.
Credit goes to Jan Beulich for spotting it with eagle eyes.
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It's bad juju to touch the APIC when it hasn't been enabled.
I also moved ack_bad_irq for x86-64 out of line following i386.
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Whenever we see that a CPU is capable of C3 (during ACPI cstate init), we
disable local APIC timer and switch to using a broadcast from external timer
interrupt (IRQ 0). This is needed because Intel CPUs stop the local
APIC timer in C3. This is currently only enabled for Intel CPUs.
Patch below adds the code for i386 and also the ACPI hunk.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the finer control of local APIC timer. We cannot provide a sub-jiffy
control like this when we use broadcast from external timer in place of
local APIC. Instead of removing this only on systems that may end up using
broadcast from external timer (due to C3), I am going the
"I'm feeling lucky" way to remove this fully. Basically, I am not sure about
usefulness of this code today. Few other architectures also don't seem to
support this today.
If you are using profiling and fine grained control and don't like this going
away in normal case, yell at me right now.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Missing newline in printk.
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Excerpt from bugzilla entry
http://bugzilla.kernel.org/show_bug.cgi?id=5518
"i386 version of Reboot-through-BIOS is unsafe: it forgets to mask APIC LVT
interrupts before jumping to a BIOS entry point. As a result, BIOS ends up
bombarded with interrupts early on boot. The BIOS does not expect it since
following a "normal" hardware cpu reset, all APIC LVT registers have the
Mask bit (16) set and can't generate interrupts.
For example, the version of Phoenix BIOS used by VMware enables interrupts
for the first time before masking/clearing APIC LVT. The APIC Timer LVT
register is still set up for a timer interrupt delivery with a high vector
from the previous Linux incarnation (0xef in our case). The BIOS has not
fully initialized its IDT at this point and the real mode gate for 0xef
remains all zeros. Vector 0xef dispatches BIOS to address 0:0, BIOS takes
a #GP and eventually hangs.
machine_shutdown() does attempt to shut down APIC before jumping to BIOS,
but it is ineffective"
Signed-off-by: Zwane Mwaikambo <zwane@arm.linux.org.uk>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Commit f2b36db692 causes a bootup hang on
at least one machine. Revert for now until we understand why. The old
code may be ugly, but it works.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
o Removes the unnecessary call to local_irq_disable().
o Kdump was failing while second kernel was coming up. Check for presence
of boot cpu apic id was failing in (apic_id_registered), hence hitting
BUG().
o This should not have failed because before calling setup_local_APIC(), it is
ensured that even if BIOS has not reported boot cpu, then hard set the
prence of it. Problem happens because of usage of hard_smp_processor_id()
which is hardcoded to zero in case of non SMP kernel. In kdump case second
kernel can boot on a cpu whose boot cpu id is not zero.
o Using boot_cpu_physical_apicid instead to hard set the presence of boot cpu.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
All kinds of ugliness exists because we don't initialize
the apics during init_IRQs.
- We calibrate jiffies in non apic mode even when we are using apics.
- We have to have special code to initialize the apics when non-smp.
- The legacy i8259 must exist and be setup correctly, even
when we won't use it past initialization.
- The kexec on panic code must restore the state of the io_apics.
- init/main.c needs a special case for !smp smp_init on x86
In addition to pure code movement I needed a couple
of non-obvious changes:
- Move setup_boot_APIC_clock into APIC_late_time_init for
simplicity.
- Use cpu_khz to generate a better approximation of loops_per_jiffies
so I can verify the timer interrupt is working.
- Call setup_apic_nmi_watchdog again after cpu_khz is initialized on
the boot cpu.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Most of these guys are simply not needed (pulled by other stuff
via asm-i386/hardirq.h). One that is not entirely useless is hilarious -
arch/i386/oprofile/nmi_timer_int.c includes linux/irq.h... as a way to
get linux/errno.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Since early CPU identify is in this information is already available
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When coming out of apic mode attempt to set the appropriate
apic back into virtual wire mode. This improves on previous versions
of this patch by by never setting bot the local apic and the ioapic
into veritual wire mode.
This code looks at data from the mptable to see if an ioapic has
an ExtInt input to make this decision. A future improvement
is to figure out which apic or ioapic was in virtual wire mode
at boot time and to remember it. That is potentially a more accurate
method, of selecting which apic to place in virutal wire mode.
Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
From: "Maciej W. Rozycki" <macro@linux-mips.org>
Fix a kexec problem whcih causes local APIC detection failure.
The problem is detect_init_APIC() is called early, before the command line
have been processed. Therefore "lapic" (and "nolapic") have not been seen,
yet.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Trival patch for CPU hotplug. In CPU identify part, only did cleaup for intel
CPUs. Need do for other CPUs if they support S3 SMP.
Signed-off-by: Li Shaohua<shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(The i386 CPU hotplug patch provides infrastructure for some work which Pavel
is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua
<shaohua.li@intel.com> is doing)
The following provides i386 architecture support for safely unregistering and
registering processors during runtime, updated for the current -mm tree. In
order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the
cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being
that on cpu offline, fixup_irqs() is called before we clear the cpu from
cpu_online_map and a long delay in order to ensure that we never have any
queued external interrupts on the APICs. There are additional changes to s390
and ppc64 to account for this change.
1) Add CONFIG_HOTPLUG_CPU
2) disable local APIC timer on dead cpus.
3) Disable preempt around irq balancing to prevent CPUs going down.
4) Print irq stats for all possible cpus.
5) Debugging check for interrupts on offline cpus.
6) Hacky fixup_irqs() to redirect irqs when cpus go off/online.
7) play_dead() for offline cpus to spin inside.
8) Handle offline cpus set in flush_tlb_others().
9) Grab lock earlier in smp_call_function() to prevent CPUs going down.
10) Implement __cpu_disable() and __cpu_die().
11) Enable local interrupts in cpu_enable() after fixup_irqs()
12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus.
13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline.
Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename user_mode to user_mode_vm and add a user_mode macro similar to the
x86-64 one.
This is useful for Xen because the linux xen kernel does not runs on the same
priviledge that a vanilla linux kernel, and with this we just need to redefine
user_mode().
Signed-off-by: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk>
Cc: Ian Pratt <m+Ian.Pratt@cl.cam.ac.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A bug against an xSeries system showed up recently noting that the
check_nmi_watchdog() test was failing.
I have been investigating it and discovered in both i386 and x86_64 the
recent change to the routine to use the cpu_callin_map has uncovered a
problem. Prior to that change, on an SMP box, the test was trivally
passing because all cpu's were found to not yet be online, but now with the
callin_map they are discovered, it goes on to test the counter and they
have not yet begun to increment, so it announces a CPU is stuck and bails
out.
On all the systems I have access to test, the announcement of failure is
also bougs... by the time you can login and check /proc/interrupts, the
NMI count is happily incrementing on all CPUs. Its just that the test is
being done too early.
I have tried moving the call to the test around a bit, and it was always
too early. I finally hit on this proposed solution, it delays the routine
via a late_initcall(), seems like the right solution to me.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I thought I'm done with fixing u32 vs. pm_message_t ... unfortunately
that turned out not to be the case as Russel King pointed out. Here are
fixes for Documentation and common code (mainly system devices).
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!