Fixes the following compile error:
kernel/fork.c:1049: error: 'struct task_struct' has no member named 'last_switch_count'
kernel/fork.c:1050: error: 'struct task_struct' has no member named 'last_switch_timestamp'
Signed-off-by: Mandeep Singh Baines <msb@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-nommu:
NOMMU: Support XIP on initramfs
NOMMU: Teach kobjsize() about VMA regions.
FLAT: Don't attempt to expand the userspace stack to fill the space allocated
FDPIC: Don't attempt to expand the userspace stack to fill the space allocated
NOMMU: Improve procfs output using per-MM VMAs
NOMMU: Make mmap allocation page trimming behaviour configurable.
NOMMU: Make VMAs per MM as for MMU-mode linux
NOMMU: Delete askedalloc and realalloc variables
NOMMU: Rename ARM's struct vm_region
NOMMU: Fix cleanup handling in ramfs_nommu_get_umapped_area()
Currently task_active_pid_ns is not safe to call after a task becomes a
zombie and exit_task_namespaces is called, as nsproxy becomes NULL. By
reading the pid namespace from the pid of the task we can trivially solve
this problem at the cost of one extra memory read in what should be the
same cacheline as we read the namespace from.
When moving things around I have made task_active_pid_ns out of line
because keeping it in pid_namespace.h would require adding includes of
pid.h and sched.h that I don't think we want.
This change does make task_active_pid_ns unsafe to call during
copy_process until we attach a pid on the task_struct which seems to be a
reasonable trade off.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Bastian Blank <bastian@waldi.eu.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Nadia Derbey <Nadia.Derbey@bull.net>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make VMAs per mm_struct as for MMU-mode linux. This solves two problems:
(1) In SYSV SHM where nattch for a segment does not reflect the number of
shmat's (and forks) done.
(2) In mmap() where the VMA's vm_mm is set to point to the parent mm by an
exec'ing process when VM_EXECUTABLE is specified, regardless of the fact
that a VMA might be shared and already have its vm_mm assigned to another
process or a dead process.
A new struct (vm_region) is introduced to track a mapped region and to remember
the circumstances under which it may be shared and the vm_list_struct structure
is discarded as it's no longer required.
This patch makes the following additional changes:
(1) Regions are now allocated with alloc_pages() rather than kmalloc() and
with no recourse to __GFP_COMP, so the pages are not composite. Instead,
each page has a reference on it held by the region. Anything else that is
interested in such a page will have to get a reference on it to retain it.
When the pages are released due to unmapping, each page is passed to
put_page() and will be freed when the page usage count reaches zero.
(2) Excess pages are trimmed after an allocation as the allocation must be
made as a power-of-2 quantity of pages.
(3) VMAs are added to the parent MM's R/B tree and mmap lists. As an MM may
end up with overlapping VMAs within the tree, the VMA struct address is
appended to the sort key.
(4) Non-anonymous VMAs are now added to the backing inode's prio list.
(5) Holes may be punched in anonymous VMAs with munmap(), releasing parts of
the backing region. The VMA and region structs will be split if
necessary.
(6) sys_shmdt() only releases one attachment to a SYSV IPC shared memory
segment instead of all the attachments at that addresss. Multiple
shmat()'s return the same address under NOMMU-mode instead of different
virtual addresses as under MMU-mode.
(7) Core dumping for ELF-FDPIC requires fewer exceptions for NOMMU-mode.
(8) /proc/maps is now the global list of mapped regions, and may list bits
that aren't actually mapped anywhere.
(9) /proc/meminfo gains a line (tagged "MmapCopy") that indicates the amount
of RAM currently allocated by mmap to hold mappable regions that can't be
mapped directly. These are copies of the backing device or file if not
anonymous.
These changes make NOMMU mode more similar to MMU mode. The downside is that
NOMMU mode requires some extra memory to track things over NOMMU without this
patch (VMAs are no longer shared, and there are now region structs).
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Mike Frysinger <vapier.adi@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Either we bounce once cacheline per cpu per tick, yielding n^2 bounces
or we just bounce a single..
Also, using per-cpu allocations for the thread-groups complicates the
per-cpu allocator in that its currently aimed to be a fixed sized
allocator and the only possible extention to that would be vmap based,
which is seriously constrained on 32 bit archs.
So making the per-cpu memory requirement depend on the number of
processes is an issue.
Lastly, it didn't deal with cpu-hotplug, although admittedly that might
be fixable.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a new kernel parameter `coredump_filter'. Setting a value to
this parameter causes the default bitmask of coredump_filter to be
changed.
It is useful for users to change coredump_filter settings for the whole
system at boot time. Without this parameter, users have to change
coredump_filter settings for each /proc/<pid>/ in an initializing script.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check CLONE_SIGHAND only is enough, because combination of CLONE_THREAD and
CLONE_SIGHAND is already done in copy_process().
Impact: cleanup, no functionality changed
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm->ioctx_list is currently protected by a reader-writer lock,
so we always grab that lock on the read side for doing ioctx
lookups. As the workload is extremely reader biased, turn this into
an rcu hlist so we can make lookup_ioctx() lockless. Get rid of
the rwlock and use a spinlock for providing update side exclusion.
There's usually only 1 entry on this list, so it doesn't make sense
to look into fancier data structures.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (241 commits)
sched, trace: update trace_sched_wakeup()
tracing/ftrace: don't trace on early stage of a secondary cpu boot, v3
Revert "x86: disable X86_PTRACE_BTS"
ring-buffer: prevent false positive warning
ring-buffer: fix dangling commit race
ftrace: enable format arguments checking
x86, bts: memory accounting
x86, bts: add fork and exit handling
ftrace: introduce tracing_reset_online_cpus() helper
tracing: fix warnings in kernel/trace/trace_sched_switch.c
tracing: fix warning in kernel/trace/trace.c
tracing/ring-buffer: remove unused ring_buffer size
trace: fix task state printout
ftrace: add not to regex on filtering functions
trace: better use of stack_trace_enabled for boot up code
trace: add a way to enable or disable the stack tracer
x86: entry_64 - introduce FTRACE_ frame macro v2
tracing/ftrace: add the printk-msg-only option
tracing/ftrace: use preempt_enable_no_resched_notrace in ring_buffer_time_stamp()
x86, bts: correctly report invalid bts records
...
Fixed up trivial conflict in scripts/recordmcount.pl due to SH bits
being already partly merged by the SH merge.
Impact: introduce new ptrace facility
Add arch_ptrace_untrace() function that is called when the tracer
detaches (either voluntarily or when the tracing task dies);
ptrace_disable() is only called on a voluntary detach.
Add ptrace_fork() and arch_ptrace_fork(). They are called when a
traced task is forked.
Clear DS and BTS related fields on fork.
Release DS resources and reclaim memory in ptrace_untrace(). This
releases resources already when the tracing task dies. We used to do
that when the traced task dies.
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Lee Schermerhorn noticed yesterday that I broke the mapping_writably_mapped
test in 2.6.7! Bad bad bug, good good find.
The i_mmap_writable count must be incremented for VM_SHARED (just as
i_writecount is for VM_DENYWRITE, but while holding the i_mmap_lock)
when dup_mmap() copies the vma for fork: it has its own more optimal
version of __vma_link_file(), and I missed this out. So the count
was later going down to 0 (dangerous) when one end unmapped, then
wrapping negative (inefficient) when the other end unmapped.
The only impact on x86 would have been that setting a mandatory lock on
a file which has at some time been opened O_RDWR and mapped MAP_SHARED
(but not necessarily PROT_WRITE) across a fork, might fail with -EAGAIN
when it should succeed, or succeed when it should fail.
But those architectures which rely on flush_dcache_page() to flush
userspace modifications back into the page before the kernel reads it,
may in some cases have skipped the flush after such a fork - though any
repetitive test will soon wrap the count negative, in which case it will
flush_dcache_page() unnecessarily.
Fix would be a two-liner, but mapping variable added, and comment moved.
Reported-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the core kernel bits of Performance Counters subsystem.
The Linux Performance Counter subsystem provides an abstraction of
performance counter hardware capabilities. It provides per task and per
CPU counters, and it provides event capabilities on top of those.
Performance counters are accessed via special file descriptors.
There's one file descriptor per virtual counter used.
The special file descriptor is opened via the perf_counter_open()
system call:
int
perf_counter_open(u32 hw_event_type,
u32 hw_event_period,
u32 record_type,
pid_t pid,
int cpu);
The syscall returns the new fd. The fd can be used via the normal
VFS system calls: read() can be used to read the counter, fcntl()
can be used to set the blocking mode, etc.
Multiple counters can be kept open at a time, and the counters
can be poll()ed.
See more details in Documentation/perf-counters.txt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While ideally CLONE_NEWUSER will eventually require no
privilege, the required permission checks are currently
not there. As a result, CLONE_NEWUSER has the same effect
as a setuid(0)+setgroups(1,"0"). While we already require
CAP_SYS_ADMIN, requiring CAP_SETUID and CAP_SETGID seems
appropriate.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: James Morris <jmorris@namei.org>
Impact: graph tracer race/crash fix
There is a nasy race in startup of a new process running the
function graph tracer. In fork.c:
total_forks++;
spin_unlock(¤t->sighand->siglock);
write_unlock_irq(&tasklist_lock);
ftrace_graph_init_task(p);
proc_fork_connector(p);
cgroup_post_fork(p);
return p;
The new task is free to run as soon as the tasklist_lock is released.
This is before the ftrace_graph_init_task. If the task does run
it will be using the same ret_stack and curr_ret_stack as the parent.
This will cause crashes that are difficult to debug.
This patch moves the ftrace_graph_init_task to just after the alloc_pid
code. This fixes the above race.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
This patch changes the name of the "return function tracer" into
function-graph-tracer which is a more suitable name for a tracing
which makes one able to retrieve the ordered call stack during
the code flow.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be). Corresponding ecryptfs fixes (by David Howells) are
here as well.
Fix refcounting. The following rules now apply:
1. The task pins the user struct.
2. The user struct pins its user namespace.
3. The user namespace pins the struct user which created it.
User namespaces are cloned during copy_creds(). Unsharing a new user_ns
is no longer possible. (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).
When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.
This incorporates a previous patch by David Howells. Here
is his original patch description:
>I suggest adding the attached incremental patch. It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
> namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
> with the other associated functions and because the 'new' in the name is
> superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
> beginning of do_fork() so that they're done prior to making any attempts
> at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
> to fill in rather than have it return the new root user. I don't imagine
> the new root user being used for anything other than filling in a cred
> struct.
>
> This also permits me to get rid of a get_uid() and a free_uid(), as the
> reference the creds were holding on the old user_struct can just be
> transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
> preparation rather than doing it in copy_creds().
>
>David
>Signed-off-by: David Howells <dhowells@redhat.com>
Changelog:
Oct 20: integrate dhowells comments
1. leave thread_keyring alone
2. use current_user_ns() in set_user()
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Impact: avoid losing some traces when a task is freed
do_exit() is not the last function called when a task finishes.
There are still some functions which are to be called such as
ree_task(). So we delay the freeing of the return stack to the
last moment.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use deeper function tracing depth safely
Some tests showed that function return tracing needed a more deeper depth
of function calls. But it could be unsafe to store these return addresses
to the stack.
So these arrays will now be allocated dynamically into task_struct of current
only when the tracer is activated.
Typical scheme when tracer is activated:
- allocate a return stack for each task in global list.
- fork: allocate the return stack for the newly created task
- exit: free return stack of current
- idle init: same as fork
I chose a default depth of 50. I don't have overruns anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: API *CHANGE*. Must update all tracepoint users.
Add DEFINE_TRACE() to tracepoints to let them declare the tracepoint
structure in a single spot for all the kernel. It helps reducing memory
consumption, especially when declaring a lot of tracepoints, e.g. for
kmalloc tracing.
*API CHANGE WARNING*: now, DECLARE_TRACE() must be used in headers for
tracepoint declarations rather than DEFINE_TRACE(). This is the sane way
to do it. The name previously used was misleading.
Updates scheduler instrumentation to follow this API change.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We don't want to get rid of the futexes just at exit() time, we want to
drop them when doing an execve() too, since that gets rid of the
previous VM image too.
Doing it at mm_release() time means that we automatically always do it
when we disassociate a VM map from the task.
Reported-by: pageexec@freemail.hu
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Alex Efros <powerman@powerman.name>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.
task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.
task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running. These are not visible
to the other tasks in the system.
__task_cred(task) then refers to the objective/real credentials of the task in
question.
current_cred() refers to the effective subjective credentials of the current
task.
prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).
override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds. These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.
In SELinux, current_has_perm() is provided as an alternative to
task_has_perm(). This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Instrument the scheduler activity (sched_switch, migration, wakeups,
wait for a task, signal delivery) and process/thread
creation/destruction (fork, exit, kthread stop). Actually, kthread
creation is not instrumented in this patch because it is architecture
dependent. It allows to connect tracers such as ftrace which detects
scheduling latencies, good/bad scheduler decisions. Tools like LTTng can
export this scheduler information along with instrumentation of the rest
of the kernel activity to perform post-mortem analysis on the scheduler
activity.
About the performance impact of tracepoints (which is comparable to
markers), even without immediate values optimizations, tests done by
Hideo Aoki on ia64 show no regression. His test case was using hackbench
on a kernel where scheduler instrumentation (about 5 events in code
scheduler code) was added. See the "Tracepoints" patch header for
performance result detail.
Changelog :
- Change instrumentation location and parameter to match ftrace
instrumentation, previously done with kernel markers.
[ mingo@elte.hu: conflict resolutions ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: 'Peter Zijlstra' <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a kref to the tty structure and use it to protect the tty->signal
tty references. For now we don't introduce it for anything else.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the second resubmission of the posix timer rework patch, posted
a few days ago.
This includes the changes from the previous resubmittion, which addressed
Oleg Nesterov's comments, removing the RCU stuff from the patch and
un-inlining the thread_group_cputime() function for SMP.
In addition, per Ingo Molnar it simplifies the UP code, consolidating much
of it with the SMP version and depending on lower-level SMP/UP handling to
take care of the differences.
It also cleans up some UP compile errors, moves the scheduler stats-related
macros into kernel/sched_stats.h, cleans up a merge error in
kernel/fork.c and has a few other minor fixes and cleanups as suggested
by Oleg and Ingo. Thanks for the review, guys.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/fork.c:843: error: ‘struct signal_struct’ has no member named ‘sum_sched_runtime’
kernel/irq/handle.c:117: warning: ‘sparse_irq_lock’ defined but not used
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Overview
This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together
with the help of Roland McGrath, the owner and original writer of this code.
The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads. It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.
This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."
Code Changes
This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine. (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.) To do this, at each tick we now update fields in
signal_struct as well as task_struct. The run_posix_cpu_timers() function
uses those fields to make its decisions.
We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:
struct task_cputime {
cputime_t utime;
cputime_t stime;
unsigned long long sum_exec_runtime;
};
This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:
struct thread_group_cputime {
struct task_cputime totals;
};
struct thread_group_cputime {
struct task_cputime *totals;
};
We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers). The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends. In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention). For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu(). The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().
We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel. The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields. The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures. The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated. The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU. Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.
Non-SMP operation is trivial and will not be mentioned further.
The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().
All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.
Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away. All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline. When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.
Performance
The fix appears not to add significant overhead to existing operations. It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below). Overall it's a wash except in those
two cases.
I've since done somewhat more involved testing on a dual-core Opteron system.
Case 1: With no itimer running, for a test with 100,000 threads, the fixed
kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
all of which was spent in the system. There were twice as many
voluntary context switches with the fix as without it.
Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
an unmodified kernel can handle), the fixed kernel ran the test in
eight percent of the time (5.8 seconds as opposed to 70 seconds) and
had better tick accuracy (.012 seconds per tick as opposed to .023
seconds per tick).
Case 3: A 4000-thread test with an initial timer tick of .01 second and an
interval of 10,000 seconds (i.e. a timer that ticks only once) had
very nearly the same performance in both cases: 6.3 seconds elapsed
for the fixed kernel versus 5.5 seconds for the unfixed kernel.
With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.
Since the fix affected the rlimit code, I also tested soft and hard CPU limits.
Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
running), the modified kernel was very slightly favored in that while
it killed the process in 19.997 seconds of CPU time (5.002 seconds of
wall time), only .003 seconds of that was system time, the rest was
user time. The unmodified kernel killed the process in 20.001 seconds
of CPU (5.014 seconds of wall time) of which .016 seconds was system
time. Really, though, the results were too close to call. The results
were essentially the same with no itimer running.
Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
(where the hard limit would never be reached) and an itimer running,
the modified kernel exhibited worse tick accuracy than the unmodified
kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise,
performance was almost indistinguishable. With no itimer running this
test exhibited virtually identical behavior and times in both cases.
In times past I did some limited performance testing. those results are below.
On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds. Performance with eight, four and one
thread were comparable. Interestingly, the timer ticks with the fix seemed
more accurate: The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick. Both cases were configured for an interval of
0.01 seconds. Again, the other tests were comparable. Each thread in this
test computed the primes up to 25,000,000.
I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix. In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable). System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite
accurate. There is obviously no comparable test without the fix.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We want to be able to control the default "rounding" that is used by
select() and poll() and friends. This is a per process property
(so that we can have a "nice" like program to start certain programs with
a looser or stricter rounding) that can be set/get via a prctl().
For this purpose, a field called "timer_slack_ns" is added to the task
struct. In addition, a field called "default_timer_slack"ns" is added
so that tasks easily can temporarily to a more/less accurate slack and then
back to the default.
The default value of the slack is set to 50 usec; this is significantly less
than 2.6.27's average select() and poll() timing error but still allows
the kernel to group timers somewhat to preserve power behavior. Applications
and admins can override this via the prctl()
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Put all i/o statistics in struct proc_io_accounting and use inline functions to
initialize and increment statistics, removing a lot of single variable
assignments.
This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and
CONFIG_TASK_IO_ACCOUNTING=y).
text data bss dec hex filename
11651 0 0 11651 2d83 kernel/exit.o.before
11619 0 0 11619 2d63 kernel/exit.o.after
10886 132 136 11154 2b92 kernel/fork.o.before
10758 132 136 11026 2b12 kernel/fork.o.after
3082029 807968 4818600 8708597 84e1f5 vmlinux.o.before
3081869 807968 4818600 8708437 84e155 vmlinux.o.after
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the PTRACE_EVENT_VFORK_DONE tracing into a tracehook.h inline,
tracehook_report_vfork_done(). The change has no effect, just clean-up.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves all the ptrace initialization and tracing logic for task
creation into tracehook.h and ptrace.h inlines. It reorganizes the code
slightly, but should not change any behavior.
There are four tracehook entry points, at each important stage of task
creation. This keeps the interface from the core fork.c code fairly
clean, while supporting the complex setup required for ptrace or something
like it.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Report per-thread I/O statistics in /proc/pid/task/tid/io and aggregate
parent I/O statistics in /proc/pid/io. This approach follows the same
model used to account per-process and per-thread CPU times.
As a practial application, this allows for example to quickly find the top
I/O consumer when a process spawns many child threads that perform the
actual I/O work, because the aggregated I/O statistics can always be found
in /proc/pid/io.
[ Oleg Nesterov points out that we should check that the task is still
alive before we iterate over the threads, but also says that we can do
that fixup on top of this later. - Linus ]
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: Matt Heaton <matt@hostmonster.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Acked-by-with-comments: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move mm->core_waiters into "struct core_state" allocated on stack. This
shrinks mm_struct a little bit and allows further changes.
This patch mostly does s/core_waiters/core_state. The only essential
change is that coredump_wait() must clear mm->core_state before return.
The coredump_wait()'s path is uglified and .text grows by 30 bytes, this
is fixed by the next patch.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kill PF_BORROWED_MM. Change use_mm/unuse_mm to not play with ->flags, and
do s/PF_BORROWED_MM/PF_KTHREAD/ for a couple of other users.
No functional changes yet. But this allows us to do further
fixes/cleanups.
oom_kill/ptrace/etc often check "p->mm != NULL" to filter out the
kthreads, this is wrong because of use_mm(). The problem with
PF_BORROWED_MM is that we need task_lock() to avoid races. With this
patch we can check PF_KTHREAD directly, or use a simple lockless helper:
/* The result must not be dereferenced !!! */
struct mm_struct *__get_task_mm(struct task_struct *tsk)
{
if (tsk->flags & PF_KTHREAD)
return NULL;
return tsk->mm;
}
Note also ecard_task(). It runs with ->mm != NULL, but it's the kernel
thread without PF_BORROWED_MM.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_clone creates a new cgroup with the pid of the task. This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid is
created. As a result, the new cgroup was created with current's pid.
This patch:
1. Moves the call inside copy_process to after the new pid
is created
2. Passes the struct pid into ns_cgroup_clone (as it is not
yet attached to the task)
3. Passes a name from ns_cgroup_clone() into cgroup_clone()
so as to keep cgroup_clone() itself simpler
4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. I think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWPID) to get
t2, which does clone(CLONE_NEWPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.
(Thanks to Dan Smith for finding the main bug)
Changelog:
June 11: Incorporate Paul Menage's feedback: don't pass
NULL to ns_cgroup_clone from unshare, and reduce
patch size by using 'nodename' in cgroup_clone.
June 10: Original version
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge Hallyn <serge@us.ibm.com>
Acked-by: Paul Menage <menage@google.com>
Tested-by: Dan Smith <danms@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We duplicate alloc/free_thread_info defines on many platforms (the
majority uses __get_free_pages/free_pages). This patch defines common
defines and removes these duplicated defines.
__HAVE_ARCH_THREAD_INFO_ALLOCATOR is introduced for platforms that do
something different.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in
a similar manner to the reservations taken for MAP_SHARED mappings. The
reserve count is accounted both globally and on a per-VMA basis for
private mappings. This guarantees that a process that successfully calls
mmap() will successfully fault all pages in the future unless fork() is
called.
The characteristics of private mappings of hugetlbfs files behaviour after
this patch are;
1. The process calling mmap() is guaranteed to succeed all future faults until
it forks().
2. On fork(), the parent may die due to SIGKILL on writes to the private
mapping if enough pages are not available for the COW. For reasonably
reliable behaviour in the face of a small huge page pool, children of
hugepage-aware processes should not reference the mappings; such as
might occur when fork()ing to exec().
3. On fork(), the child VMAs inherit no reserves. Reads on pages already
faulted by the parent will succeed. Successful writes will depend on enough
huge pages being free in the pool.
4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper
and at fault time otherwise.
Before this patch, all reads or writes in the child potentially needs page
allocations that can later lead to the death of the parent. This applies
to reads and writes of uninstantiated pages as well as COW. After the
patch it is only a write to an instantiated page that causes problems.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone. Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.
There should be no user-visible difference that matters. The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees. Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.
Signed-off-by: Roland McGrath <roland@redhat.com>
* 'core/locking' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
lockdep: fix kernel/fork.c warning
lockdep: fix ftrace irq tracing false positive
lockdep: remove duplicate definition of STATIC_LOCKDEP_MAP_INIT
lockdep: add lock_class information to lock_chain and output it
lockdep: add lock_class information to lock_chain and output it
lockdep: output lock_class key instead of address for forward dependency output
__mutex_lock_common: use signal_pending_state()
mutex-debug: check mutex magic before owner
Fixed up conflict in kernel/fork.c manually
* 'tracing/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (228 commits)
ftrace: build fix for ftraced_suspend
ftrace: separate out the function enabled variable
ftrace: add ftrace_kill_atomic
ftrace: use current CPU for function startup
ftrace: start wakeup tracing after setting function tracer
ftrace: check proper config for preempt type
ftrace: trace schedule
ftrace: define function trace nop
ftrace: move sched_switch enable after markers
ftrace: prevent ftrace modifications while being kprobe'd, v2
fix "ftrace: store mcount address in rec->ip"
mmiotrace broken in linux-next (8-bit writes only)
ftrace: avoid modifying kprobe'd records
ftrace: freeze kprobe'd records
kprobes: enable clean usage of get_kprobe
ftrace: store mcount address in rec->ip
ftrace: build fix with gcc 4.3
namespacecheck: fixes
ftrace: fix "notrace" filtering priority
ftrace: fix printout
...
(Updated with a common max-stack-used checker that knows about
the canary, as suggested by Joe Perches)
Use a canary at the end of the stack to clearly indicate
at oops time whether the stack has ever overflowed.
This is a very simple implementation with a couple of
drawbacks:
1) a thread may legitimately use exactly up to the last
word on the stack
-- but the chances of doing this and then oopsing later seem slim
2) it's possible that the stack usage isn't dense enough
that the canary location could get skipped over
-- but the worst that happens is that we don't flag the overrun
-- though this happens fairly often in my testing :(
With the code in place, an intentionally-bloated stack oops might
do:
BUG: unable to handle kernel paging request at ffff8103f84cc680
IP: [<ffffffff810253df>] update_curr+0x9a/0xa8
PGD 8063 PUD 0
Thread overran stack or stack corrupted
Oops: 0000 [1] SMP
CPU 0
...
... unless the stack overrun is so bad that it corrupts some other
thread.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Suggested by Roland McGrath.
Initialize signal->curr_target in copy_signal(). This way ->curr_target is
never == NULL, we can kill the check in __group_complete_signal's hot path.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel implements readlink of /proc/pid/exe by getting the file from
the first executable VMA. Then the path to the file is reconstructed and
reported as the result.
Because of the VMA walk the code is slightly different on nommu systems.
This patch avoids separate /proc/pid/exe code on nommu systems. Instead of
walking the VMAs to find the first executable file-backed VMA we store a
reference to the exec'd file in the mm_struct.
That reference would prevent the filesystem holding the executable file
from being unmounted even after unmapping the VMAs. So we track the number
of VM_EXECUTABLE VMAs and drop the new reference when the last one is
unmapped. This avoids pinning the mounted filesystem.
[akpm@linux-foundation.org: improve comments]
[yamamoto@valinux.co.jp: fix dup_mmap]
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Howells <dhowells@redhat.com>
Cc:"Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption. CLONE_NEWIPC must detach from the existing
undo lists.
Fix, part 2: perform an implicit CLONE_SYSVSEM in CLONE_NEWIPC. CLONE_NEWIPC
creates a new IPC namespace, the task cannot access the existing semaphore
arrays after the unshare syscall. Thus the task can/must detach from the
existing undo list entries, too.
This fixes the kernel corruption, because it makes it impossible that
undo records from two different namespaces are in sysvsem.undo_list.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption. CLONE_NEWIPC must detach from the existing
undo lists.
Fix, part 1: add support for sys_unshare(CLONE_SYSVSEM)
The original reason to not support it was the potential (inevitable?)
confusion due to the fact that sys_unshare(CLONE_SYSVSEM) has the
inverse meaning of clone(CLONE_SYSVSEM).
Our two most reasonable options then appear to be (1) fully support
CLONE_SYSVSEM, or (2) continue to refuse explicit CLONE_SYSVSEM,
but always do it anyway on unshare(CLONE_SYSVSEM). This patch does
(1).
Changelog:
Apr 16: SEH: switch to Manfred's alternative patch which
removes the unshare_semundo() function which
always refused CLONE_SYSVSEM.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the mem_cgroup member from mm_struct and instead adds an owner.
This approach was suggested by Paul Menage. The advantage of this approach
is that, once the mm->owner is known, using the subsystem id, the cgroup
can be determined. It also allows several control groups that are
virtually grouped by mm_struct, to exist independent of the memory
controller i.e., without adding mem_cgroup's for each controller, to
mm_struct.
A new config option CONFIG_MM_OWNER is added and the memory resource
controller selects this config option.
This patch also adds cgroup callbacks to notify subsystems when mm->owner
changes. The mm_cgroup_changed callback is called with the task_lock() of
the new task held and is called just prior to changing the mm->owner.
I am indebted to Paul Menage for the several reviews of this patchset and
helping me make it lighter and simpler.
This patch was tested on a powerpc box, it was compiled with both the
MM_OWNER config turned on and off.
After the thread group leader exits, it's moved to init_css_state by
cgroup_exit(), thus all future charges from runnings threads would be
redirected to the init_css_set's subsystem.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>,
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch renames mpol_copy() to mpol_dup() because, well, that's what it
does. Like, e.g., strdup() for strings, mpol_dup() takes a pointer to an
existing mempolicy, allocates a new one and copies the contents.
In a later patch, I want to use the name mpol_copy() to copy the contents from
one mempolicy to another like, e.g., strcpy() does for strings.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a change that was requested some time ago by Mel Gorman. Makes sense
to me, so here it is.
Note: I retain the name "mpol_free_shared_policy()" because it actually does
free the shared_policy, which is NOT a reference counted object. However, ...
The mempolicy object[s] referenced by the shared_policy are reference counted,
so mpol_put() is used to release the reference held by the shared_policy. The
mempolicy might not be freed at this time, because some task attached to the
shared object associated with the shared policy may be in the process of
allocating a page based on the mempolicy. In that case, the task performing
the allocation will hold a reference on the mempolicy, obtained via
mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks
holding such a reference have called mpol_put() for the mempolicy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The SIE instruction on s390 uses the 2nd half of the page table page to
virtualize the storage keys of a guest. This patch offers the s390_enable_sie
function, which reorganizes the page tables of a single-threaded process to
reserve space in the page table:
s390_enable_sie makes sure that the process is single threaded and then uses
dup_mm to create a new mm with reorganized page tables. The old mm is freed
and the process has now a page status extended field after every page table.
Code that wants to exploit pgstes should SELECT CONFIG_PGSTE.
This patch has a small common code hit, namely making dup_mm non-static.
Edit (Carsten): I've modified Martin's patch, following Jeremy Fitzhardinge's
review feedback. Now we do have the prototype for dup_mm in
include/linux/sched.h. Following Martin's suggestion, s390_enable_sie() does now
call task_lock() to prevent race against ptrace modification of mm_users.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Arrgghhh...
Sorry about that, I'd been sure I'd folded that one, but it actually got
lost. Please apply - that breaks execve().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* let unshare_files() give caller the displaced files_struct
* don't bother with grabbing reference only to drop it in the
caller if it hadn't been shared in the first place
* in that form unshare_files() is trivially implemented via
unshare_fd(), so we eliminate the duplicate logics in fork.c
* reset_files_struct() is not just only called for current;
it will break the system if somebody ever calls it for anything
else (we can't modify ->files of somebody else). Lose the
task_struct * argument.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* unshare_files() can fail; doing it after irreversible actions is wrong
and de_thread() is certainly irreversible.
* since we do it unconditionally anyway, we might as well do it in do_execve()
and save ourselves the PITA in binfmt handlers, etc.
* while we are at it, binfmt_som actually leaked files_struct on failure.
As a side benefit, unshare_files(), put_files_struct() and reset_files_struct()
become unexported.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Split the FPU save area from the task struct. This allows easy migration
of FPU context, and it's generally cleaner. It also allows the following
two optimizations:
1) only allocate when the application actually uses FPU, so in the first
lazy FPU trap. This could save memory for non-fpu using apps. Next patch
does this lazy allocation.
2) allocate the right size for the actual cpu rather than 512 bytes always.
Patches enabling xsave/xrstor support (coming shortly) will take advantage
of this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Use struct path in fs_struct.
Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some time ago the xxx_vnr() calls (e.g. pid_vnr or find_task_by_vpid) were
_all_ converted to operate on the current pid namespace. After this each call
like xxx_nr_ns(foo, current->nsproxy->pid_ns) is nothing but a xxx_vnr(foo)
one.
Switch all the xxx_nr_ns() callers to use the xxx_vnr() calls where
appropriate.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Reviewed-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
signal_struct->tsk points to the ->group_leader and thus we have the nasty
code in de_thread() which has to change it and restart ->real_timer if the
leader is changed.
Use "struct pid *leader_pid" instead. This also allows us to kill now
unneeded send_group_sig_info().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Roland McGrath <roland@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Basic setup routines, the mm_struct has a pointer to the cgroup that
it belongs to and the the page has a page_cgroup associated with it.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. It is much easier to grep for ->state change if __set_task_state() is used
instead of the direct assignment.
2. ptrace_stop() and handle_group_stop() use set_task_state() which adds the
unneeded mb() (btw even if we use mb() it is still possible that do_wait()
sees the new ->state but not ->exit_code, but this is ok).
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(with Martin Schwidefsky <schwidefsky@de.ibm.com>)
The pgd/pud/pmd/pte page table allocation functions get a mm_struct pointer as
first argument. The free functions do not get the mm_struct argument. This
is 1) asymmetrical and 2) to do mm related page table allocations the mm
argument is needed on the free function as well.
[kamalesh@linux.vnet.ibm.com: i386 fix]
[akpm@linux-foundation.org: coding-syle fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ulrich says that we never used this clone flags and that nothing should be
using it.
As we're down to only a single bit left in clone's flags argument, let's add a
warning to check that no userspace is actually using it. Hopefully we will
be able to recycle it.
Roland said:
CLONE_STOPPED was previously used by some NTPL versions when under
thread_db (i.e. only when being actively debugged by gdb), but not for a
long time now, and it never worked reliably when it was used. Removing it
seems fine to me.
[akpm@linux-foundation.org: it looks like CLONE_DETACHED is being used]
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
syslets (or other threads/processes that want io context sharing) can
set this to enforce sharing of io context.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
LatencyTOP kernel infrastructure; it measures latencies in the
scheduler and tracks it system wide and per process.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements a new version of RCU which allows its read-side
critical sections to be preempted. It uses a set of counter pairs
to keep track of the read-side critical sections and flips them
when all tasks exit read-side critical section. The details
of this implementation can be found in this paper -
http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf
and the article-
http://lwn.net/Articles/253651/
This patch was developed as a part of the -rt kernel development and
meant to provide better latencies when read-side critical sections of
RCU don't disable preemption. As a consequence of keeping track of RCU
readers, the readers have a slight overhead (optimizations in the paper).
This implementation co-exists with the "classic" RCU implementations
and can be switched to at compiler.
Also includes RCU tracing summarized in debugfs.
[ akpm@linux-foundation.org: build fixes on non-preempt architectures ]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Reviewed-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time. Consider, for instance, softirq_timer and softirq_sched. A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run. So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.
This causes two problems in the current code:
1) If a high-priority bound task and a low-priority unbounded task queue
up behind the running task, we will fail to ever relocate the unbounded
task because we terminate the search on the first unmovable task.
2) We spend precious futile cycles in the fast-path trying to pull
overloaded tasks over. It is therefore optimial to strive to avoid the
overhead all together if we can cheaply detect the condition before
overload even occurs.
This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask. A weight of 1 indicates that
the task cannot be migrated. We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.
We introduce a per-rq variable to count the number of migratable tasks
that are currently running. We only go into overload if we have more
than one rt task, AND at least one of them is migratable.
In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this patch extends the soft-lockup detector to automatically
detect hung TASK_UNINTERRUPTIBLE tasks. Such hung tasks are
printed the following way:
------------------>
INFO: task prctl:3042 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message
prctl D fd5e3793 0 3042 2997
f6050f38 00000046 00000001 fd5e3793 00000009 c06d8264 c06dae80 00000286
f6050f40 f6050f00 f7d34d90 f7d34fc8 c1e1be80 00000001 f6050000 00000000
f7e92d00 00000286 f6050f18 c0489d1a f6050f40 00006605 00000000 c0133a5b
Call Trace:
[<c04883a5>] schedule_timeout+0x6d/0x8b
[<c04883d8>] schedule_timeout_uninterruptible+0x15/0x17
[<c0133a76>] msleep+0x10/0x16
[<c0138974>] sys_prctl+0x30/0x1e2
[<c0104c52>] sysenter_past_esp+0x5f/0xa5
=======================
2 locks held by prctl/3042:
#0: (&sb->s_type->i_mutex_key#5){--..}, at: [<c0197d11>] do_fsync+0x38/0x7a
#1: (jbd_handle){--..}, at: [<c01ca3d2>] journal_start+0xc7/0xe9
<------------------
the current default timeout is 120 seconds. Such messages are printed
up to 10 times per bootup. If the system has crashed already then the
messages are not printed.
if lockdep is enabled then all held locks are printed as well.
this feature is a natural extension to the softlockup-detector (kernel
locked up without scheduling) and to the NMI watchdog (kernel locked up
with IRQs disabled).
[ Gautham R Shenoy <ego@in.ibm.com>: CPU hotplug fixes. ]
[ Andrew Morton <akpm@linux-foundation.org>: build warning fix. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Currently we are complicating the code in copy_process, the clone ABI, and
if we fix the bugs sys_setsid itself, with an unnecessary open coded
version of sys_setsid.
So just simplify everything and don't special case the session and pgrp of
the initial process in a pid namespace.
Having this special case actually presents to user space the classic linux
startup conditions with session == pgrp == 0 for /sbin/init.
We already handle sending signals to processes in a child pid namespace.
We need to handle sending signals to processes in a parent pid namespace
for cases like SIGCHILD and SIGIO.
This makes nothing extra visible inside a pid namespace. So this extra
special case appears to have no redeeming merits.
Further removing this special case increases the flexibility of how we can
use pid namespaces, by not requiring the initial process in a pid namespace
to be a daemon.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sukadev Bhattiprolu reported a kernel crash with control groups.
There are couple of problems discovered by Suka's test:
- The test requires the cgroup filesystem to be mounted with
atleast the cpu and ns options (i.e both namespace and cpu
controllers are active in the same hierarchy).
# mkdir /dev/cpuctl
# mount -t cgroup -ocpu,ns none cpuctl
(or simply)
# mount -t cgroup none cpuctl -> Will activate all controllers
in same hierarchy.
- The test invokes clone() with CLONE_NEWNS set. This causes a a new child
to be created, also a new group (do_fork->copy_namespaces->ns_cgroup_clone->
cgroup_clone) and the child is attached to the new group (cgroup_clone->
attach_task->sched_move_task). At this point in time, the child's scheduler
related fields are uninitialized (including its on_rq field, which it has
inherited from parent). As a result sched_move_task thinks its on
runqueue, when it isn't.
As a solution to this problem, I moved sched_fork() call, which
initializes scheduler related fields on a new task, before
copy_namespaces(). I am not sure though whether moving up will
cause other side-effects. Do you see any issue?
- The second problem exposed by this test is that task_new_fair()
assumes that parent and child will be part of the same group (which
needn't be as this test shows). As a result, cfs_rq->curr can be NULL
for the child.
The solution is to test for curr pointer being NULL in
task_new_fair().
With the patch below, I could run ns_exec() fine w/o a crash.
Reported-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
keep utime/stime monotonic.
cpustats use utime/stime as a ratio against sum_exec_runtime, as a
consequence it can happen - when the ratio changes faster than time
accumulates - that either can be appear to go backwards.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This initialization of is not needed so just remove it.
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pgrp field is not used widely around the kernel so it is now marked as
deprecated with appropriate comment.
The initialization of INIT_SIGNALS is trimmed because
a) they are set to 0 automatically;
b) gcc cannot properly initialize two anonymous (the second one
is the one with the session) unions. In this particular case
to make it compile we'd have to add some field initialized
right before the .pgrp.
This is the same patch as the 1ec320afdc one
(from Cedric), but for the pgrp field.
Some progress report:
We have to deprecate the pid, tgid, session and pgrp fields on struct
task_struct and struct signal_struct. The session and pgrp are already
deprecated. The tgid value is close to being such - the worst known usage
in in fs/locks.c and audit code. The pid field deprecation is mainly
blocked by numerous printk-s around the kernel that print the tsk->pid to
log.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tsk->exit_state can only be 0, EXIT_ZOMBIE, or EXIT_DEAD. A non-zero test
is the same as tsk->exit_state & (EXIT_ZOMBIE | EXIT_DEAD), so just testing
tsk->exit_state is sufficient.
Signed-off-by: Eugene Teo <eugeneteo@kernel.sg>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the largest patch in the set. Make all (I hope) the places where
the pid is shown to or get from user operate on the virtual pids.
The idea is:
- all in-kernel data structures must store either struct pid itself
or the pid's global nr, obtained with pid_nr() call;
- when seeking the task from kernel code with the stored id one
should use find_task_by_pid() call that works with global pids;
- when showing pid's numerical value to the user the virtual one
should be used, but however when one shows task's pid outside this
task's namespace the global one is to be used;
- when getting the pid from userspace one need to consider this as
the virtual one and use appropriate task/pid-searching functions.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: nuther build fix]
[akpm@linux-foundation.org: yet nuther build fix]
[akpm@linux-foundation.org: remove unneeded casts]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Alexey Dobriyan <adobriyan@openvz.org>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The namespace's proc_mnt must be kern_mount-ed to make this pointer always
valid, independently of whether the user space mounted the proc or not. This
solves raced in proc_flush_task, etc. with the proc_mnt switching from NULL
to not-NULL.
The initialization is done after the init's pid is created and hashed to make
proc_get_sb() finr it and get for root inode.
Sice the namespace holds the vfsmnt, vfsmnt holds the superblock and the
superblock holds the namespace we must explicitly break this circle to destroy
all the stuff. This is done after the init of the namespace dies. Running a
few steps forward - when init exits it will kill all its children, so no
proc_mnt will be needed after its death.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When clone() is invoked with CLONE_NEWPID, create a new pid namespace and then
create a new struct pid for the new process. Allocate pid_t's for the new
process in the new pid namespace and all ancestor pid namespaces. Make the
newly cloned process the session and process group leader.
Since the active pid namespace is special and expected to be the first entry
in pid->upid_list, preserve the order of pid namespaces.
The size of 'struct pid' is dependent on the the number of pid namespaces the
process exists in, so we use multiple pid-caches'. Only one pid cache is
created during system startup and this used by processes that exist only in
init_pid_ns.
When a process clones its pid namespace, we create additional pid caches as
necessary and use the pid cache to allocate 'struct pids' for that depth.
Note, that with this patch the newly created namespace won't work, since the
rest of the kernel still uses global pids, but this is to be fixed soon. Init
pid namespace still works.
[oleg@tv-sign.ru: merge fix]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create new namespace we will need to allocate the struct pid, that
will have one extra struct upid in array, comparing to the parent.
Thus we need to know the new namespace (if any) in alloc_pid() to init this
struct upid properly, so move the alloc_pid() call lower in copy_process().
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each struct upid element of struct pid has to be initialized properly, i.e.
its nr mst be allocated from appropriate pidmap and ns set to appropriate
namespace.
When allocating a new pid, we need to know the namespace this pid will live
in, so the additional argument is added to alloc_pid().
On the other hand, the rest of the kernel still uses the pid->nr and
pid->pid_chain fields, so these ones are still initialized, but this will be
removed soon.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When someone wants to deal with some other taks's namespaces it has to lock
the task and then to get the desired namespace if the one exists. This is
slow on read-only paths and may be impossible in some cases.
E.g. Oleg recently noticed a race between unshare() and the (sent for
review in cgroups) pid namespaces - when the task notifies the parent it
has to know the parent's namespace, but taking the task_lock() is
impossible there - the code is under write locked tasklist lock.
On the other hand switching the namespace on task (daemonize) and releasing
the namespace (after the last task exit) is rather rare operation and we
can sacrifice its speed to solve the issues above.
The access to other task namespaces is proposed to be performed
like this:
rcu_read_lock();
nsproxy = task_nsproxy(tsk);
if (nsproxy != NULL) {
/ *
* work with the namespaces here
* e.g. get the reference on one of them
* /
} / *
* NULL task_nsproxy() means that this task is
* almost dead (zombie)
* /
rcu_read_unlock();
This patch has passed the review by Eric and Oleg :) and,
of course, tested.
[clg@fr.ibm.com: fix unshare()]
[ebiederm@xmission.com: Update get_net_ns_by_pid]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move alloc_pid() into copy_process(). This will keep all pid and pid
namespace code together and simplify error handling when we support multiple
pid namespaces.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Herbert Poetzel <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The set of functions process_session, task_session, process_group and
task_pgrp is confusing, as the names can be mixed with each other when looking
at the code for a long time.
The proposals are to
* equip the functions that return the integer with _nr suffix to
represent that fact,
* and to make all functions work with task (not process) by making
the common prefix of the same name.
For monotony the routines signal_session() and set_signal_session() are
replaced with task_session_nr() and set_task_session(), especially since they
are only used with the explicit task->signal dereference.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the filesystem support logic from the cpusets system and makes cpusets
a cgroup subsystem
The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get
passed through to the cgroup filesystem with the appropriate options to
emulate the old cpuset filesystem behaviour.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the struct css_set embedded in task_struct with a pointer; all tasks
that have the same set of memberships across all hierarchies will share a
css_set object, and will be linked via their css_sets field to the "tasks"
list_head in the css_set.
Assuming that many tasks share the same cgroup assignments, this reduces
overall space usage and keeps the size of the task_struct down (three pointers
added to task_struct compared to a non-cgroups kernel, no matter how many
subsystems are registered).
[akpm@linux-foundation.org: fix a printk]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the necessary hooks to the fork() and exit() paths to ensure
that new children inherit their parent's cgroup assignments, and that
exiting processes release reference counts on their cgroups.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds items to the taststats struct to account for user and system
time based on scaling the CPU frequency and instruction issue rates.
Adds account_(user|system)_time_scaled callbacks which architectures
can use to account for time using this mechanism.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hell knows what happened in commit 63b05203af57e7de4f3bb63b8b81d43bc196d32b
during 2.6.9 development. Commit introduced io_wait field which remained
write-only than and still remains write-only.
Also garbage collect macros which "use" io_wait.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tasks should go to the refrigerator only if explicitly requested to do that by
the freezer and not as a result of inheriting the TIF_FREEZE flag set from the
parent. Make it happen.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For those who don't care about CONFIG_SECURITY.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
robust_list, compat_robust_list, pi_state_list, pi_state_cache are
really used if futexes are on.
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab constructors currently have a flags parameter that is never used. And
the order of the arguments is opposite to other slab functions. The object
pointer is placed before the kmem_cache pointer.
Convert
ctor(void *object, struct kmem_cache *s, unsigned long flags)
to
ctor(struct kmem_cache *s, void *object)
throughout the kernel
[akpm@linux-foundation.org: coupla fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on ideas of Andrew:
http://marc.info/?l=linux-kernel&m=102912915020543&w=2
Scale the bdi dirty limit inversly with the tasks dirty rate.
This makes heavy writers have a lower dirty limit than the occasional writer.
Andrea proposed something similar:
http://lwn.net/Articles/152277/
The main disadvantage to his patch is that he uses an unrelated quantity to
measure time, which leaves him with a workload dependant tunable. Other than
that the two approaches appear quite similar.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
like for cpustat, introduce the "gtime" (guest time of the task) and
"cgtime" (guest time of the task children) fields for the
tasks. Modify signal_struct and task_struct.
Modify /proc/<pid>/stat to display these new fields.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Acked-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allows you to create a new network namespace
using sys_clone, or sys_unshare.
As the network namespace is still experimental and under development
clone and unshare support is only made available when CONFIG_NET_NS is
selected at compile time.
As this patch introduces network namespace support into code paths
that exist when the CONFIG_NET is not selected there are a few
additions made to net_namespace.h to allow a few more functions
to be used when the networking stack is not compiled in.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This simplifies signalfd code, by avoiding it to remain attached to the
sighand during its lifetime.
In this way, the signalfd remain attached to the sighand only during
poll(2) (and select and epoll) and read(2). This also allows to remove
all the custom "tsk == current" checks in kernel/signal.c, since
dequeue_signal() will only be called by "current".
I think this is also what Ben was suggesting time ago.
The external effect of this, is that a thread can extract only its own
private signals and the group ones. I think this is an acceptable
behaviour, in that those are the signals the thread would be able to
fetch w/out signalfd.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is the code for the "lg.ko" module, which allows lguest guests to
be launched.
[akpm@linux-foundation.org: update for futex-new-private-futexes]
[akpm@linux-foundation.org: build fix]
[jmorris@namei.org: lguest: use hrtimers]
[akpm@linux-foundation.org: x86_64 build fix]
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andi Kleen <ak@suse.de>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lguest does some fairly lowlevel things to support a host, which
normal modules don't need:
math_state_restore:
When the guest triggers a Device Not Available fault, we need
to be able to restore the FPU
__put_task_struct:
We need to hold a reference to another task for inter-guest
I/O, and put_task_struct() is an inline function which calls
__put_task_struct.
access_process_vm:
We need to access another task for inter-guest I/O.
map_vm_area & __get_vm_area:
We need to map the switcher shim (ie. monitor) at 0xFFC01000.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds an interface to set/reset flags which determines each memory
segment should be dumped or not when a core file is generated.
/proc/<pid>/coredump_filter file is provided to access the flags. You can
change the flag status for a particular process by writing to or reading from
the file.
The flag status is inherited to the child process when it is created.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the freezer treats all tasks as freezable, except for the kernel
threads that explicitly set the PF_NOFREEZE flag for themselves. This
approach is problematic, since it requires every kernel thread to either
set PF_NOFREEZE explicitly, or call try_to_freeze(), even if it doesn't
care for the freezing of tasks at all.
It seems better to only require the kernel threads that want to or need to
be frozen to use some freezer-related code and to remove any
freezer-related code from the other (nonfreezable) kernel threads, which is
done in this patch.
The patch causes all kernel threads to be nonfreezable by default (ie. to
have PF_NOFREEZE set by default) and introduces the set_freezable()
function that should be called by the freezable kernel threads in order to
unset PF_NOFREEZE. It also makes all of the currently freezable kernel
threads call set_freezable(), so it shouldn't cause any (intentional)
change of behaviour to appear. Additionally, it updates documentation to
describe the freezing of tasks more accurately.
[akpm@linux-foundation.org: build fixes]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch enables the unshare of user namespaces.
It adds a new clone flag CLONE_NEWUSER and implements copy_user_ns() which
resets the current user_struct and adds a new root user (uid == 0)
For now, unsharing the user namespace allows a process to reset its
user_struct accounting and uid 0 in the new user namespace should be contained
using appropriate means, for instance selinux
The plan, when the full support is complete (all uid checks covered), is to
keep the original user's rights in the original namespace, and let a process
become uid 0 in the new namespace, with full capabilities to the new
namespace.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Andrew Morgan <agm@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Basically, it will allow a process to unshare its user_struct table,
resetting at the same time its own user_struct and all the associated
accounting.
A new root user (uid == 0) is added to the user namespace upon creation.
Such root users have full privileges and it seems that theses privileges
should be controlled through some means (process capabilities ?)
The unshare is not included in this patch.
Changes since [try #4]:
- Updated get_user_ns and put_user_ns to accept NULL, and
get_user_ns to return the namespace.
Changes since [try #3]:
- moved struct user_namespace to files user_namespace.{c,h}
Changes since [try #2]:
- removed struct user_namespace* argument from find_user()
Changes since [try #1]:
- removed struct user_namespace* argument from find_user()
- added a root_user per user namespace
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Andrew Morgan <agm@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add TTY input auditing, used to audit system administrator's actions. This is
required by various security standards such as DCID 6/3 and PCI to provide
non-repudiation of administrator's actions and to allow a review of past
actions if the administrator seems to overstep their duties or if the system
becomes misconfigured for unknown reasons. These requirements do not make it
necessary to audit TTY output as well.
Compared to an user-space keylogger, this approach records TTY input using the
audit subsystem, correlated with other audit events, and it is completely
transparent to the user-space application (e.g. the console ioctls still
work).
TTY input auditing works on a higher level than auditing all system calls
within the session, which would produce an overwhelming amount of mostly
useless audit events.
Add an "audit_tty" attribute, inherited across fork (). Data read from TTYs
by process with the attribute is sent to the audit subsystem by the kernel.
The audit netlink interface is extended to allow modifying the audit_tty
attribute, and to allow sending explanatory audit events from user-space (for
example, a shell might send an event containing the final command, after the
interactive command-line editing and history expansion is performed, which
might be difficult to decipher from the TTY input alone).
Because the "audit_tty" attribute is inherited across fork (), it would be set
e.g. for sshd restarted within an audited session. To prevent this, the
audit_tty attribute is cleared when a process with no open TTY file
descriptors (e.g. after daemon startup) opens a TTY.
See https://www.redhat.com/archives/linux-audit/2007-June/msg00000.html for a
more detailed rationale document for an older version of this patch.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Miloslav Trmac <mitr@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Paul Fulghum <paulkf@microgate.com>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 411187fb05 caused boot time to move and
process start times to become invalid after suspend. Using boot based time
for those restores the old behaviour and fixes the issue.
[akpm@linux-foundation.org: little cleanup]
Signed-off-by: Tomas Janousek <tjanouse@redhat.com>
Cc: Tomas Smetana <tsmetana@redhat.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently try_to_freeze_tasks() has to wait until all of the vforked processes
exit and for this reason every user can make it fail. To fix this problem we
can introduce the additional process flag PF_FREEZER_SKIP to be used by tasks
that do not want to be counted as freezable by the freezer and want to have
TIF_FREEZE set nevertheless. Then, this flag can be set by tasks using
sys_vfork() before they call wait_for_completion(&vfork) and cleared after
they have woken up. After clearing it, the tasks should call try_to_freeze()
as soon as possible.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>