Commit Graph

5 Commits

Author SHA1 Message Date
Kenji Kaneshige ac542a513b [IA64] Fix kernel panic in kdump on INIT
Fix the problem that kdump on INIT causes a kernel panic if kdump
kernel image is not configured. The cause of this problem is
machine_kexec_on_init() is using printk in INIT context. It should
use ia64_mca_printk() instead.

Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2007-10-12 15:24:06 -07:00
Hidetoshi Seto 43ed3baf62 [IA64] printing support for MCA/INIT
Printing message to console from MCA/INIT handler is useful,
however doing oops_in_progress = 1 in them exactly makes
something in kernel wrong. Especially it sounds ugly if
system goes wrong after returning from recoverable MCA.

This patch adds ia64_mca_printk() function that collects
messages into temporary-not-so-large message buffer during
in MCA/INIT environment and print them out later, after
returning to normal context or when handlers determine to
down the system.

Also this print function is exported for use in extensional
MCA handler. It would be useful to describe detail about
recovery.

NOTE:
I don't think it is sane thing if temporary message buffer
is enlarged enough to hold whole stack dumps from INIT, so
buffering is disabled during stack dump from INIT-monarch
(= default_monarch_init_process). please fix it in future.

Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-09-26 14:44:37 -07:00
Russ Anderson d2a28ad9fa [IA64] MCA recovery: kernel context recovery table
Memory errors encountered by user applications may surface
when the CPU is running in kernel context.  The current code
will not attempt recovery if the MCA surfaces in kernel
context (privilage mode 0).  This patch adds a check for cases
where the user initiated the load that surfaces in kernel
interrupt code.

An example is a user process lauching a load from memory
and the data in memory had bad ECC.  Before the bad data
gets to the CPU register, and interrupt comes in.  The
code jumps to the IVT interrupt entry point and begins
execution in kernel context.  The process of saving the
user registers (SAVE_REST) causes the bad data to be loaded
into a CPU register, triggering the MCA.  The MCA surfaces in
kernel context, even though the load was initiated from
user context.

As suggested by David and Tony, this patch uses an exception
table like approach, puting the tagged recovery addresses in
a searchable table.  One difference from the exception table
is that MCAs do not surface in precise places (such as with
a TLB miss), so instead of tagging specific instructions,
address ranges are registers.  A single macro is used to do
the tagging, with the input parameter being the label
of the starting address and the macro being the ending
address.  This limits clutter in the code.

This patch only tags one spot, the interrupt ivt entry.
Testing showed that spot to be a "heavy hitter" with
MCAs surfacing while saving user registers.  Other spots
can be added as needed by adding a single macro.

Signed-off-by: Russ Anderson (rja@sgi.com)
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-24 09:49:52 -08:00
Hidetoshi Seto 20305e5972 [IA64] mca_drv cleanup
There were some trailing white spaces, long lines, brackets in
weird style etc.  This patch cleans them up.

Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-09-16 10:39:40 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00