Became irrelevant when x86_64 unexported ia32_sys_call_table.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This merges two sets of files which had no business being split apart in the
first place.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Reuse asm-x86-64/unistd.h to build our syscall table, like x86-64 already
does.
Like for i386, we must add some #defines for all the (right!) changes UML does
to x86-64 syscall table.
Note: I noted a bogus:
[ __NR_sched_yield ] = (syscall_handler_t *) yield,
while doing this patch (which could only be a workaround for some strange bug,
but I would ignore this possibility). I'm changing this without notice.
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Split the i386 entry.S files into entry.S and syscall_table.S which is
included in the previous one (so actually there is no difference between them)
and use the syscall_table.S in the UML build, instead of tracking by hand the
syscall table changes (which is inherently error-prone).
We must only insert the right #defines to inject the changes we need from the
i386 syscall table (for instance some different function names); also, we
don't implement some i386 syscalls, as ioperm(), nor some TLS-related ones
(yet to provide).
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!