/* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License version 2. */ #include #include #include #include #include #include #include #include "gfs2.h" #include "incore.h" #include "glock.h" #include "glops.h" #include "lops.h" #include "meta_io.h" #include "quota.h" #include "rgrp.h" #include "super.h" #include "trans.h" #include "ops_file.h" #include "util.h" #include "log.h" #define BFITNOENT ((u32)~0) /* * These routines are used by the resource group routines (rgrp.c) * to keep track of block allocation. Each block is represented by two * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. * * 0 = Free * 1 = Used (not metadata) * 2 = Unlinked (still in use) inode * 3 = Used (metadata) */ static const char valid_change[16] = { /* current */ /* n */ 0, 1, 1, 1, /* e */ 1, 0, 0, 0, /* w */ 0, 0, 0, 1, 1, 0, 0, 0 }; /** * gfs2_setbit - Set a bit in the bitmaps * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @block: the block to set * @new_state: the new state of the block * */ static void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buffer, unsigned int buflen, u32 block, unsigned char new_state) { unsigned char *byte, *end, cur_state; unsigned int bit; byte = buffer + (block / GFS2_NBBY); bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; end = buffer + buflen; gfs2_assert(rgd->rd_sbd, byte < end); cur_state = (*byte >> bit) & GFS2_BIT_MASK; if (valid_change[new_state * 4 + cur_state]) { *byte ^= cur_state << bit; *byte |= new_state << bit; } else gfs2_consist_rgrpd(rgd); } /** * gfs2_testbit - test a bit in the bitmaps * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @block: the block to read * */ static unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, unsigned char *buffer, unsigned int buflen, u32 block) { unsigned char *byte, *end, cur_state; unsigned int bit; byte = buffer + (block / GFS2_NBBY); bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; end = buffer + buflen; gfs2_assert(rgd->rd_sbd, byte < end); cur_state = (*byte >> bit) & GFS2_BIT_MASK; return cur_state; } /** * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing * a block in a given allocation state. * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @goal: start search at this block's bit-pair (within @buffer) * @old_state: GFS2_BLKST_XXX the state of the block we're looking for; * bit 0 = alloc(1)/free(0), bit 1 = meta(1)/data(0) * * Scope of @goal and returned block number is only within this bitmap buffer, * not entire rgrp or filesystem. @buffer will be offset from the actual * beginning of a bitmap block buffer, skipping any header structures. * * Return: the block number (bitmap buffer scope) that was found */ static u32 gfs2_bitfit(struct gfs2_rgrpd *rgd, unsigned char *buffer, unsigned int buflen, u32 goal, unsigned char old_state) { unsigned char *byte, *end, alloc; u32 blk = goal; unsigned int bit; byte = buffer + (goal / GFS2_NBBY); bit = (goal % GFS2_NBBY) * GFS2_BIT_SIZE; end = buffer + buflen; alloc = (old_state & 1) ? 0 : 0x55; while (byte < end) { if ((*byte & 0x55) == alloc) { blk += (8 - bit) >> 1; bit = 0; byte++; continue; } if (((*byte >> bit) & GFS2_BIT_MASK) == old_state) return blk; bit += GFS2_BIT_SIZE; if (bit >= 8) { bit = 0; byte++; } blk++; } return BFITNOENT; } /** * gfs2_bitcount - count the number of bits in a certain state * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @state: the state of the block we're looking for * * Returns: The number of bits */ static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, unsigned char *buffer, unsigned int buflen, unsigned char state) { unsigned char *byte = buffer; unsigned char *end = buffer + buflen; unsigned char state1 = state << 2; unsigned char state2 = state << 4; unsigned char state3 = state << 6; u32 count = 0; for (; byte < end; byte++) { if (((*byte) & 0x03) == state) count++; if (((*byte) & 0x0C) == state1) count++; if (((*byte) & 0x30) == state2) count++; if (((*byte) & 0xC0) == state3) count++; } return count; } /** * gfs2_rgrp_verify - Verify that a resource group is consistent * @sdp: the filesystem * @rgd: the rgrp * */ void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi = NULL; u32 length = rgd->rd_ri.ri_length; u32 count[4], tmp; int buf, x; memset(count, 0, 4 * sizeof(u32)); /* Count # blocks in each of 4 possible allocation states */ for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; for (x = 0; x < 4; x++) count[x] += gfs2_bitcount(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, x); } if (count[0] != rgd->rd_rg.rg_free) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "free data mismatch: %u != %u\n", count[0], rgd->rd_rg.rg_free); return; } tmp = rgd->rd_ri.ri_data - rgd->rd_rg.rg_free - rgd->rd_rg.rg_dinodes; if (count[1] + count[2] != tmp) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used data mismatch: %u != %u\n", count[1], tmp); return; } if (count[3] != rgd->rd_rg.rg_dinodes) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used metadata mismatch: %u != %u\n", count[3], rgd->rd_rg.rg_dinodes); return; } if (count[2] > count[3]) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "unlinked inodes > inodes: %u\n", count[2]); return; } } static inline int rgrp_contains_block(struct gfs2_rindex_host *ri, u64 block) { u64 first = ri->ri_data0; u64 last = first + ri->ri_data; return first <= block && block < last; } /** * gfs2_blk2rgrpd - Find resource group for a given data/meta block number * @sdp: The GFS2 superblock * @n: The data block number * * Returns: The resource group, or NULL if not found */ struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk) { struct gfs2_rgrpd *rgd; spin_lock(&sdp->sd_rindex_spin); list_for_each_entry(rgd, &sdp->sd_rindex_mru_list, rd_list_mru) { if (rgrp_contains_block(&rgd->rd_ri, blk)) { list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list); spin_unlock(&sdp->sd_rindex_spin); return rgd; } } spin_unlock(&sdp->sd_rindex_spin); return NULL; } /** * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem * @sdp: The GFS2 superblock * * Returns: The first rgrp in the filesystem */ struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) { gfs2_assert(sdp, !list_empty(&sdp->sd_rindex_list)); return list_entry(sdp->sd_rindex_list.next, struct gfs2_rgrpd, rd_list); } /** * gfs2_rgrpd_get_next - get the next RG * @rgd: A RG * * Returns: The next rgrp */ struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) { if (rgd->rd_list.next == &rgd->rd_sbd->sd_rindex_list) return NULL; return list_entry(rgd->rd_list.next, struct gfs2_rgrpd, rd_list); } static void clear_rgrpdi(struct gfs2_sbd *sdp) { struct list_head *head; struct gfs2_rgrpd *rgd; struct gfs2_glock *gl; spin_lock(&sdp->sd_rindex_spin); sdp->sd_rindex_forward = NULL; head = &sdp->sd_rindex_recent_list; while (!list_empty(head)) { rgd = list_entry(head->next, struct gfs2_rgrpd, rd_recent); list_del(&rgd->rd_recent); } spin_unlock(&sdp->sd_rindex_spin); head = &sdp->sd_rindex_list; while (!list_empty(head)) { rgd = list_entry(head->next, struct gfs2_rgrpd, rd_list); gl = rgd->rd_gl; list_del(&rgd->rd_list); list_del(&rgd->rd_list_mru); if (gl) { gl->gl_object = NULL; gfs2_glock_put(gl); } kfree(rgd->rd_bits); kfree(rgd); } } void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) { mutex_lock(&sdp->sd_rindex_mutex); clear_rgrpdi(sdp); mutex_unlock(&sdp->sd_rindex_mutex); } /** * gfs2_compute_bitstructs - Compute the bitmap sizes * @rgd: The resource group descriptor * * Calculates bitmap descriptors, one for each block that contains bitmap data * * Returns: errno */ static int compute_bitstructs(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi; u32 length = rgd->rd_ri.ri_length; /* # blocks in hdr & bitmap */ u32 bytes_left, bytes; int x; if (!length) return -EINVAL; rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); if (!rgd->rd_bits) return -ENOMEM; bytes_left = rgd->rd_ri.ri_bitbytes; for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; /* small rgrp; bitmap stored completely in header block */ if (length == 1) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* header block */ } else if (x == 0) { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* last block */ } else if (x + 1 == length) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_ri.ri_bitbytes - bytes_left; bi->bi_len = bytes; /* other blocks */ } else { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header); bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_ri.ri_bitbytes - bytes_left; bi->bi_len = bytes; } bytes_left -= bytes; } if (bytes_left) { gfs2_consist_rgrpd(rgd); return -EIO; } bi = rgd->rd_bits + (length - 1); if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_ri.ri_data) { if (gfs2_consist_rgrpd(rgd)) { gfs2_rindex_print(&rgd->rd_ri); fs_err(sdp, "start=%u len=%u offset=%u\n", bi->bi_start, bi->bi_len, bi->bi_offset); } return -EIO; } return 0; } /** * gfs2_ri_update - Pull in a new resource index from the disk * @gl: The glock covering the rindex inode * * Returns: 0 on successful update, error code otherwise */ static int gfs2_ri_update(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct inode *inode = &ip->i_inode; struct gfs2_rgrpd *rgd; char buf[sizeof(struct gfs2_rindex)]; struct file_ra_state ra_state; u64 junk = ip->i_di.di_size; int error; if (do_div(junk, sizeof(struct gfs2_rindex))) { gfs2_consist_inode(ip); return -EIO; } clear_rgrpdi(sdp); file_ra_state_init(&ra_state, inode->i_mapping); for (sdp->sd_rgrps = 0;; sdp->sd_rgrps++) { loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); error = gfs2_internal_read(ip, &ra_state, buf, &pos, sizeof(struct gfs2_rindex)); if (!error) break; if (error != sizeof(struct gfs2_rindex)) { if (error > 0) error = -EIO; goto fail; } rgd = kzalloc(sizeof(struct gfs2_rgrpd), GFP_NOFS); error = -ENOMEM; if (!rgd) goto fail; mutex_init(&rgd->rd_mutex); lops_init_le(&rgd->rd_le, &gfs2_rg_lops); rgd->rd_sbd = sdp; list_add_tail(&rgd->rd_list, &sdp->sd_rindex_list); list_add_tail(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list); gfs2_rindex_in(&rgd->rd_ri, buf); error = compute_bitstructs(rgd); if (error) goto fail; error = gfs2_glock_get(sdp, rgd->rd_ri.ri_addr, &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); if (error) goto fail; rgd->rd_gl->gl_object = rgd; rgd->rd_rg_vn = rgd->rd_gl->gl_vn - 1; } sdp->sd_rindex_vn = ip->i_gl->gl_vn; return 0; fail: clear_rgrpdi(sdp); return error; } /** * gfs2_rindex_hold - Grab a lock on the rindex * @sdp: The GFS2 superblock * @ri_gh: the glock holder * * We grab a lock on the rindex inode to make sure that it doesn't * change whilst we are performing an operation. We keep this lock * for quite long periods of time compared to other locks. This * doesn't matter, since it is shared and it is very, very rarely * accessed in the exclusive mode (i.e. only when expanding the filesystem). * * This makes sure that we're using the latest copy of the resource index * special file, which might have been updated if someone expanded the * filesystem (via gfs2_grow utility), which adds new resource groups. * * Returns: 0 on success, error code otherwise */ int gfs2_rindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ri_gh) { struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); struct gfs2_glock *gl = ip->i_gl; int error; error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, ri_gh); if (error) return error; /* Read new copy from disk if we don't have the latest */ if (sdp->sd_rindex_vn != gl->gl_vn) { mutex_lock(&sdp->sd_rindex_mutex); if (sdp->sd_rindex_vn != gl->gl_vn) { error = gfs2_ri_update(ip); if (error) gfs2_glock_dq_uninit(ri_gh); } mutex_unlock(&sdp->sd_rindex_mutex); } return error; } /** * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps * @rgd: the struct gfs2_rgrpd describing the RG to read in * * Read in all of a Resource Group's header and bitmap blocks. * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. * * Returns: errno */ int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_glock *gl = rgd->rd_gl; unsigned int length = rgd->rd_ri.ri_length; struct gfs2_bitmap *bi; unsigned int x, y; int error; mutex_lock(&rgd->rd_mutex); spin_lock(&sdp->sd_rindex_spin); if (rgd->rd_bh_count) { rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); mutex_unlock(&rgd->rd_mutex); return 0; } spin_unlock(&sdp->sd_rindex_spin); for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; error = gfs2_meta_read(gl, rgd->rd_ri.ri_addr + x, 0, &bi->bi_bh); if (error) goto fail; } for (y = length; y--;) { bi = rgd->rd_bits + y; error = gfs2_meta_wait(sdp, bi->bi_bh); if (error) goto fail; if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : GFS2_METATYPE_RG)) { error = -EIO; goto fail; } } if (rgd->rd_rg_vn != gl->gl_vn) { gfs2_rgrp_in(&rgd->rd_rg, (rgd->rd_bits[0].bi_bh)->b_data); rgd->rd_rg_vn = gl->gl_vn; } spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone = rgd->rd_rg.rg_free; rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); mutex_unlock(&rgd->rd_mutex); return 0; fail: while (x--) { bi = rgd->rd_bits + x; brelse(bi->bi_bh); bi->bi_bh = NULL; gfs2_assert_warn(sdp, !bi->bi_clone); } mutex_unlock(&rgd->rd_mutex); return error; } void gfs2_rgrp_bh_hold(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; spin_lock(&sdp->sd_rindex_spin); gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count); rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); } /** * gfs2_rgrp_bh_put - Release RG bitmaps read in with gfs2_rgrp_bh_get() * @rgd: the struct gfs2_rgrpd describing the RG to read in * */ void gfs2_rgrp_bh_put(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; int x, length = rgd->rd_ri.ri_length; spin_lock(&sdp->sd_rindex_spin); gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count); if (--rgd->rd_bh_count) { spin_unlock(&sdp->sd_rindex_spin); return; } for (x = 0; x < length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; kfree(bi->bi_clone); bi->bi_clone = NULL; brelse(bi->bi_bh); bi->bi_bh = NULL; } spin_unlock(&sdp->sd_rindex_spin); } void gfs2_rgrp_repolish_clones(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; unsigned int length = rgd->rd_ri.ri_length; unsigned int x; for (x = 0; x < length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; if (!bi->bi_clone) continue; memcpy(bi->bi_clone + bi->bi_offset, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); } spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone = rgd->rd_rg.rg_free; spin_unlock(&sdp->sd_rindex_spin); } /** * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode * @ip: the incore GFS2 inode structure * * Returns: the struct gfs2_alloc */ struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip) { struct gfs2_alloc *al = &ip->i_alloc; /* FIXME: Should assert that the correct locks are held here... */ memset(al, 0, sizeof(*al)); return al; } /** * try_rgrp_fit - See if a given reservation will fit in a given RG * @rgd: the RG data * @al: the struct gfs2_alloc structure describing the reservation * * If there's room for the requested blocks to be allocated from the RG: * Sets the $al_reserved_data field in @al. * Sets the $al_reserved_meta field in @al. * Sets the $al_rgd field in @al. * * Returns: 1 on success (it fits), 0 on failure (it doesn't fit) */ static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_alloc *al) { struct gfs2_sbd *sdp = rgd->rd_sbd; int ret = 0; spin_lock(&sdp->sd_rindex_spin); if (rgd->rd_free_clone >= al->al_requested) { al->al_rgd = rgd; ret = 1; } spin_unlock(&sdp->sd_rindex_spin); return ret; } /** * recent_rgrp_first - get first RG from "recent" list * @sdp: The GFS2 superblock * @rglast: address of the rgrp used last * * Returns: The first rgrp in the recent list */ static struct gfs2_rgrpd *recent_rgrp_first(struct gfs2_sbd *sdp, u64 rglast) { struct gfs2_rgrpd *rgd = NULL; spin_lock(&sdp->sd_rindex_spin); if (list_empty(&sdp->sd_rindex_recent_list)) goto out; if (!rglast) goto first; list_for_each_entry(rgd, &sdp->sd_rindex_recent_list, rd_recent) { if (rgd->rd_ri.ri_addr == rglast) goto out; } first: rgd = list_entry(sdp->sd_rindex_recent_list.next, struct gfs2_rgrpd, rd_recent); out: spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * recent_rgrp_next - get next RG from "recent" list * @cur_rgd: current rgrp * @remove: * * Returns: The next rgrp in the recent list */ static struct gfs2_rgrpd *recent_rgrp_next(struct gfs2_rgrpd *cur_rgd, int remove) { struct gfs2_sbd *sdp = cur_rgd->rd_sbd; struct list_head *head; struct gfs2_rgrpd *rgd; spin_lock(&sdp->sd_rindex_spin); head = &sdp->sd_rindex_recent_list; list_for_each_entry(rgd, head, rd_recent) { if (rgd == cur_rgd) { if (cur_rgd->rd_recent.next != head) rgd = list_entry(cur_rgd->rd_recent.next, struct gfs2_rgrpd, rd_recent); else rgd = NULL; if (remove) list_del(&cur_rgd->rd_recent); goto out; } } rgd = NULL; if (!list_empty(head)) rgd = list_entry(head->next, struct gfs2_rgrpd, rd_recent); out: spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * recent_rgrp_add - add an RG to tail of "recent" list * @new_rgd: The rgrp to add * */ static void recent_rgrp_add(struct gfs2_rgrpd *new_rgd) { struct gfs2_sbd *sdp = new_rgd->rd_sbd; struct gfs2_rgrpd *rgd; unsigned int count = 0; unsigned int max = sdp->sd_rgrps / gfs2_jindex_size(sdp); spin_lock(&sdp->sd_rindex_spin); list_for_each_entry(rgd, &sdp->sd_rindex_recent_list, rd_recent) { if (rgd == new_rgd) goto out; if (++count >= max) goto out; } list_add_tail(&new_rgd->rd_recent, &sdp->sd_rindex_recent_list); out: spin_unlock(&sdp->sd_rindex_spin); } /** * forward_rgrp_get - get an rgrp to try next from full list * @sdp: The GFS2 superblock * * Returns: The rgrp to try next */ static struct gfs2_rgrpd *forward_rgrp_get(struct gfs2_sbd *sdp) { struct gfs2_rgrpd *rgd; unsigned int journals = gfs2_jindex_size(sdp); unsigned int rg = 0, x; spin_lock(&sdp->sd_rindex_spin); rgd = sdp->sd_rindex_forward; if (!rgd) { if (sdp->sd_rgrps >= journals) rg = sdp->sd_rgrps * sdp->sd_jdesc->jd_jid / journals; for (x = 0, rgd = gfs2_rgrpd_get_first(sdp); x < rg; x++, rgd = gfs2_rgrpd_get_next(rgd)) /* Do Nothing */; sdp->sd_rindex_forward = rgd; } spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * forward_rgrp_set - set the forward rgrp pointer * @sdp: the filesystem * @rgd: The new forward rgrp * */ static void forward_rgrp_set(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd) { spin_lock(&sdp->sd_rindex_spin); sdp->sd_rindex_forward = rgd; spin_unlock(&sdp->sd_rindex_spin); } /** * get_local_rgrp - Choose and lock a rgrp for allocation * @ip: the inode to reserve space for * @rgp: the chosen and locked rgrp * * Try to acquire rgrp in way which avoids contending with others. * * Returns: errno */ static int get_local_rgrp(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd, *begin = NULL; struct gfs2_alloc *al = &ip->i_alloc; int flags = LM_FLAG_TRY; int skipped = 0; int loops = 0; int error; /* Try recently successful rgrps */ rgd = recent_rgrp_first(sdp, ip->i_last_rg_alloc); while (rgd) { error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, LM_FLAG_TRY, &al->al_rgd_gh); switch (error) { case 0: if (try_rgrp_fit(rgd, al)) goto out; gfs2_glock_dq_uninit(&al->al_rgd_gh); rgd = recent_rgrp_next(rgd, 1); break; case GLR_TRYFAILED: rgd = recent_rgrp_next(rgd, 0); break; default: return error; } } /* Go through full list of rgrps */ begin = rgd = forward_rgrp_get(sdp); for (;;) { error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, flags, &al->al_rgd_gh); switch (error) { case 0: if (try_rgrp_fit(rgd, al)) goto out; gfs2_glock_dq_uninit(&al->al_rgd_gh); break; case GLR_TRYFAILED: skipped++; break; default: return error; } rgd = gfs2_rgrpd_get_next(rgd); if (!rgd) rgd = gfs2_rgrpd_get_first(sdp); if (rgd == begin) { if (++loops >= 3) return -ENOSPC; if (!skipped) loops++; flags = 0; if (loops == 2) gfs2_log_flush(sdp, NULL); } } out: ip->i_last_rg_alloc = rgd->rd_ri.ri_addr; if (begin) { recent_rgrp_add(rgd); rgd = gfs2_rgrpd_get_next(rgd); if (!rgd) rgd = gfs2_rgrpd_get_first(sdp); forward_rgrp_set(sdp, rgd); } return 0; } /** * gfs2_inplace_reserve_i - Reserve space in the filesystem * @ip: the inode to reserve space for * * Returns: errno */ int gfs2_inplace_reserve_i(struct gfs2_inode *ip, char *file, unsigned int line) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = &ip->i_alloc; int error; if (gfs2_assert_warn(sdp, al->al_requested)) return -EINVAL; error = gfs2_rindex_hold(sdp, &al->al_ri_gh); if (error) return error; error = get_local_rgrp(ip); if (error) { gfs2_glock_dq_uninit(&al->al_ri_gh); return error; } al->al_file = file; al->al_line = line; return 0; } /** * gfs2_inplace_release - release an inplace reservation * @ip: the inode the reservation was taken out on * * Release a reservation made by gfs2_inplace_reserve(). */ void gfs2_inplace_release(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = &ip->i_alloc; if (gfs2_assert_warn(sdp, al->al_alloced <= al->al_requested) == -1) fs_warn(sdp, "al_alloced = %u, al_requested = %u " "al_file = %s, al_line = %u\n", al->al_alloced, al->al_requested, al->al_file, al->al_line); al->al_rgd = NULL; gfs2_glock_dq_uninit(&al->al_rgd_gh); gfs2_glock_dq_uninit(&al->al_ri_gh); } /** * gfs2_get_block_type - Check a block in a RG is of given type * @rgd: the resource group holding the block * @block: the block number * * Returns: The block type (GFS2_BLKST_*) */ unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) { struct gfs2_bitmap *bi = NULL; u32 length, rgrp_block, buf_block; unsigned int buf; unsigned char type; length = rgd->rd_ri.ri_length; rgrp_block = block - rgd->rd_ri.ri_data0; for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY) break; } gfs2_assert(rgd->rd_sbd, buf < length); buf_block = rgrp_block - bi->bi_start * GFS2_NBBY; type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, buf_block); return type; } /** * rgblk_search - find a block in @old_state, change allocation * state to @new_state * @rgd: the resource group descriptor * @goal: the goal block within the RG (start here to search for avail block) * @old_state: GFS2_BLKST_XXX the before-allocation state to find * @new_state: GFS2_BLKST_XXX the after-allocation block state * * Walk rgrp's bitmap to find bits that represent a block in @old_state. * Add the found bitmap buffer to the transaction. * Set the found bits to @new_state to change block's allocation state. * * This function never fails, because we wouldn't call it unless we * know (from reservation results, etc.) that a block is available. * * Scope of @goal and returned block is just within rgrp, not the whole * filesystem. * * Returns: the block number allocated */ static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char old_state, unsigned char new_state) { struct gfs2_bitmap *bi = NULL; u32 length = rgd->rd_ri.ri_length; u32 blk = 0; unsigned int buf, x; /* Find bitmap block that contains bits for goal block */ for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) break; } gfs2_assert(rgd->rd_sbd, buf < length); /* Convert scope of "goal" from rgrp-wide to within found bit block */ goal -= bi->bi_start * GFS2_NBBY; /* Search (up to entire) bitmap in this rgrp for allocatable block. "x <= length", instead of "x < length", because we typically start the search in the middle of a bit block, but if we can't find an allocatable block anywhere else, we want to be able wrap around and search in the first part of our first-searched bit block. */ for (x = 0; x <= length; x++) { if (bi->bi_clone) blk = gfs2_bitfit(rgd, bi->bi_clone + bi->bi_offset, bi->bi_len, goal, old_state); else blk = gfs2_bitfit(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, goal, old_state); if (blk != BFITNOENT) break; /* Try next bitmap block (wrap back to rgrp header if at end) */ buf = (buf + 1) % length; bi = rgd->rd_bits + buf; goal = 0; } if (gfs2_assert_withdraw(rgd->rd_sbd, x <= length)) blk = 0; gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); gfs2_setbit(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, blk, new_state); if (bi->bi_clone) gfs2_setbit(rgd, bi->bi_clone + bi->bi_offset, bi->bi_len, blk, new_state); return bi->bi_start * GFS2_NBBY + blk; } /** * rgblk_free - Change alloc state of given block(s) * @sdp: the filesystem * @bstart: the start of a run of blocks to free * @blen: the length of the block run (all must lie within ONE RG!) * @new_state: GFS2_BLKST_XXX the after-allocation block state * * Returns: Resource group containing the block(s) */ static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, u32 blen, unsigned char new_state) { struct gfs2_rgrpd *rgd; struct gfs2_bitmap *bi = NULL; u32 length, rgrp_blk, buf_blk; unsigned int buf; rgd = gfs2_blk2rgrpd(sdp, bstart); if (!rgd) { if (gfs2_consist(sdp)) fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); return NULL; } length = rgd->rd_ri.ri_length; rgrp_blk = bstart - rgd->rd_ri.ri_data0; while (blen--) { for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY) break; } gfs2_assert(rgd->rd_sbd, buf < length); buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY; rgrp_blk++; if (!bi->bi_clone) { bi->bi_clone = kmalloc(bi->bi_bh->b_size, GFP_NOFS | __GFP_NOFAIL); memcpy(bi->bi_clone + bi->bi_offset, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); } gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); gfs2_setbit(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, buf_blk, new_state); } return rgd; } /** * gfs2_alloc_data - Allocate a data block * @ip: the inode to allocate the data block for * * Returns: the allocated block */ u64 gfs2_alloc_data(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = &ip->i_alloc; struct gfs2_rgrpd *rgd = al->al_rgd; u32 goal, blk; u64 block; if (rgrp_contains_block(&rgd->rd_ri, ip->i_di.di_goal_data)) goal = ip->i_di.di_goal_data - rgd->rd_ri.ri_data0; else goal = rgd->rd_last_alloc_data; blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED); rgd->rd_last_alloc_data = blk; block = rgd->rd_ri.ri_data0 + blk; ip->i_di.di_goal_data = block; gfs2_assert_withdraw(sdp, rgd->rd_rg.rg_free); rgd->rd_rg.rg_free--; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); al->al_alloced++; gfs2_statfs_change(sdp, 0, -1, 0); gfs2_quota_change(ip, +1, ip->i_inode.i_uid, ip->i_inode.i_gid); spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone--; spin_unlock(&sdp->sd_rindex_spin); return block; } /** * gfs2_alloc_meta - Allocate a metadata block * @ip: the inode to allocate the metadata block for * * Returns: the allocated block */ u64 gfs2_alloc_meta(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = &ip->i_alloc; struct gfs2_rgrpd *rgd = al->al_rgd; u32 goal, blk; u64 block; if (rgrp_contains_block(&rgd->rd_ri, ip->i_di.di_goal_meta)) goal = ip->i_di.di_goal_meta - rgd->rd_ri.ri_data0; else goal = rgd->rd_last_alloc_meta; blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED); rgd->rd_last_alloc_meta = blk; block = rgd->rd_ri.ri_data0 + blk; ip->i_di.di_goal_meta = block; gfs2_assert_withdraw(sdp, rgd->rd_rg.rg_free); rgd->rd_rg.rg_free--; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); al->al_alloced++; gfs2_statfs_change(sdp, 0, -1, 0); gfs2_quota_change(ip, +1, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_trans_add_unrevoke(sdp, block); spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone--; spin_unlock(&sdp->sd_rindex_spin); return block; } /** * gfs2_alloc_di - Allocate a dinode * @dip: the directory that the inode is going in * * Returns: the block allocated */ u64 gfs2_alloc_di(struct gfs2_inode *dip, u64 *generation) { struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode); struct gfs2_alloc *al = &dip->i_alloc; struct gfs2_rgrpd *rgd = al->al_rgd; u32 blk; u64 block; blk = rgblk_search(rgd, rgd->rd_last_alloc_meta, GFS2_BLKST_FREE, GFS2_BLKST_DINODE); rgd->rd_last_alloc_meta = blk; block = rgd->rd_ri.ri_data0 + blk; gfs2_assert_withdraw(sdp, rgd->rd_rg.rg_free); rgd->rd_rg.rg_free--; rgd->rd_rg.rg_dinodes++; *generation = rgd->rd_rg.rg_igeneration++; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); al->al_alloced++; gfs2_statfs_change(sdp, 0, -1, +1); gfs2_trans_add_unrevoke(sdp, block); spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone--; spin_unlock(&sdp->sd_rindex_spin); return block; } /** * gfs2_free_data - free a contiguous run of data block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * */ void gfs2_free_data(struct gfs2_inode *ip, u64 bstart, u32 blen) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); if (!rgd) return; rgd->rd_rg.rg_free += blen; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); gfs2_statfs_change(sdp, 0, +blen, 0); gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); } /** * gfs2_free_meta - free a contiguous run of data block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * */ void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); if (!rgd) return; rgd->rd_rg.rg_free += blen; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); gfs2_statfs_change(sdp, 0, +blen, 0); gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_meta_wipe(ip, bstart, blen); } void gfs2_unlink_di(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_rgrpd *rgd; u64 blkno = ip->i_num.no_addr; rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); if (!rgd) return; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); } static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_rgrpd *tmp_rgd; tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); if (!tmp_rgd) return; gfs2_assert_withdraw(sdp, rgd == tmp_rgd); if (!rgd->rd_rg.rg_dinodes) gfs2_consist_rgrpd(rgd); rgd->rd_rg.rg_dinodes--; rgd->rd_rg.rg_free++; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(&rgd->rd_rg, rgd->rd_bits[0].bi_bh->b_data); gfs2_statfs_change(sdp, 0, +1, -1); gfs2_trans_add_rg(rgd); } void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) { gfs2_free_uninit_di(rgd, ip->i_num.no_addr); gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_meta_wipe(ip, ip->i_num.no_addr, 1); } /** * gfs2_rlist_add - add a RG to a list of RGs * @sdp: the filesystem * @rlist: the list of resource groups * @block: the block * * Figure out what RG a block belongs to and add that RG to the list * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_add(struct gfs2_sbd *sdp, struct gfs2_rgrp_list *rlist, u64 block) { struct gfs2_rgrpd *rgd; struct gfs2_rgrpd **tmp; unsigned int new_space; unsigned int x; if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) return; rgd = gfs2_blk2rgrpd(sdp, block); if (!rgd) { if (gfs2_consist(sdp)) fs_err(sdp, "block = %llu\n", (unsigned long long)block); return; } for (x = 0; x < rlist->rl_rgrps; x++) if (rlist->rl_rgd[x] == rgd) return; if (rlist->rl_rgrps == rlist->rl_space) { new_space = rlist->rl_space + 10; tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), GFP_NOFS | __GFP_NOFAIL); if (rlist->rl_rgd) { memcpy(tmp, rlist->rl_rgd, rlist->rl_space * sizeof(struct gfs2_rgrpd *)); kfree(rlist->rl_rgd); } rlist->rl_space = new_space; rlist->rl_rgd = tmp; } rlist->rl_rgd[rlist->rl_rgrps++] = rgd; } /** * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate * and initialize an array of glock holders for them * @rlist: the list of resource groups * @state: the lock state to acquire the RG lock in * @flags: the modifier flags for the holder structures * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state, int flags) { unsigned int x; rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), GFP_NOFS | __GFP_NOFAIL); for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, flags, &rlist->rl_ghs[x]); } /** * gfs2_rlist_free - free a resource group list * @list: the list of resource groups * */ void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) { unsigned int x; kfree(rlist->rl_rgd); if (rlist->rl_ghs) { for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_uninit(&rlist->rl_ghs[x]); kfree(rlist->rl_ghs); } }