/* * Linux/PA-RISC Project (http://www.parisc-linux.org/) * * Floating-point emulation code * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * BEGIN_DESC * * File: * @(#) pa/fp/fpudispatch.c $Revision: 1.1 $ * * Purpose: * <<please update with a synopsis of the functionality provided by this file>> * * External Interfaces: * <<the following list was autogenerated, please review>> * emfpudispatch(ir, dummy1, dummy2, fpregs) * fpudispatch(ir, excp_code, holder, fpregs) * * Internal Interfaces: * <<the following list was autogenerated, please review>> * static u_int decode_06(u_int, u_int *) * static u_int decode_0c(u_int, u_int, u_int, u_int *) * static u_int decode_0e(u_int, u_int, u_int, u_int *) * static u_int decode_26(u_int, u_int *) * static u_int decode_2e(u_int, u_int *) * static void update_status_cbit(u_int *, u_int, u_int, u_int) * * Theory: * <<please update with a overview of the operation of this file>> * * END_DESC */ #define FPUDEBUG 0 #include "float.h" #include <linux/kernel.h> #include <asm/processor.h> /* #include <sys/debug.h> */ /* #include <machine/sys/mdep_private.h> */ #define COPR_INST 0x30000000 /* * definition of extru macro. If pos and len are constants, the compiler * will generate an extru instruction when optimized */ #define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1)) /* definitions of bit field locations in the instruction */ #define fpmajorpos 5 #define fpr1pos 10 #define fpr2pos 15 #define fptpos 31 #define fpsubpos 18 #define fpclass1subpos 16 #define fpclasspos 22 #define fpfmtpos 20 #define fpdfpos 18 #define fpnulpos 26 /* * the following are the extra bits for the 0E major op */ #define fpxr1pos 24 #define fpxr2pos 19 #define fpxtpos 25 #define fpxpos 23 #define fp0efmtpos 20 /* * the following are for the multi-ops */ #define fprm1pos 10 #define fprm2pos 15 #define fptmpos 31 #define fprapos 25 #define fptapos 20 #define fpmultifmt 26 /* * the following are for the fused FP instructions */ /* fprm1pos 10 */ /* fprm2pos 15 */ #define fpraupos 18 #define fpxrm2pos 19 /* fpfmtpos 20 */ #define fpralpos 23 #define fpxrm1pos 24 /* fpxtpos 25 */ #define fpfusedsubop 26 /* fptpos 31 */ /* * offset to constant zero in the FP emulation registers */ #define fpzeroreg (32*sizeof(double)/sizeof(u_int)) /* * extract the major opcode from the instruction */ #define get_major(op) extru(op,fpmajorpos,6) /* * extract the two bit class field from the FP instruction. The class is at bit * positions 21-22 */ #define get_class(op) extru(op,fpclasspos,2) /* * extract the 3 bit subop field. For all but class 1 instructions, it is * located at bit positions 16-18 */ #define get_subop(op) extru(op,fpsubpos,3) /* * extract the 2 or 3 bit subop field from class 1 instructions. It is located * at bit positions 15-16 (PA1.1) or 14-16 (PA2.0) */ #define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */ #define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */ /* definitions of unimplemented exceptions */ #define MAJOR_0C_EXCP 0x09 #define MAJOR_0E_EXCP 0x0b #define MAJOR_06_EXCP 0x03 #define MAJOR_26_EXCP 0x23 #define MAJOR_2E_EXCP 0x2b #define PA83_UNIMP_EXCP 0x01 /* * Special Defines for TIMEX specific code */ #define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2) #define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG) /* * Static function definitions */ #define _PROTOTYPES #if defined(_PROTOTYPES) || defined(_lint) static u_int decode_0c(u_int, u_int, u_int, u_int *); static u_int decode_0e(u_int, u_int, u_int, u_int *); static u_int decode_06(u_int, u_int *); static u_int decode_26(u_int, u_int *); static u_int decode_2e(u_int, u_int *); static void update_status_cbit(u_int *, u_int, u_int, u_int); #else /* !_PROTOTYPES&&!_lint */ static u_int decode_0c(); static u_int decode_0e(); static u_int decode_06(); static u_int decode_26(); static u_int decode_2e(); static void update_status_cbit(); #endif /* _PROTOTYPES&&!_lint */ #define VASSERT(x) static void parisc_linux_get_fpu_type(u_int fpregs[]) { /* on pa-linux the fpu type is not filled in by the * caller; it is constructed here */ if (boot_cpu_data.cpu_type == pcxs) fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG; else if (boot_cpu_data.cpu_type == pcxt || boot_cpu_data.cpu_type == pcxt_) fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG; else if (boot_cpu_data.cpu_type >= pcxu) fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG; } /* * this routine will decode the excepting floating point instruction and * call the approiate emulation routine. * It is called by decode_fpu with the following parameters: * fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register) * where current_ir is the instruction to be emulated, * unimplemented_code is the exception_code that the hardware generated * and &Fpu_register is the address of emulated FP reg 0. */ u_int fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[]) { u_int class, subop; u_int fpu_type_flags; /* All FP emulation code assumes that ints are 4-bytes in length */ VASSERT(sizeof(int) == 4); parisc_linux_get_fpu_type(fpregs); fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ class = get_class(ir); if (class == 1) { if (fpu_type_flags & PA2_0_FPU_FLAG) subop = get_subop1_PA2_0(ir); else subop = get_subop1_PA1_1(ir); } else subop = get_subop(ir); if (FPUDEBUG) printk("class %d subop %d\n", class, subop); switch (excp_code) { case MAJOR_0C_EXCP: case PA83_UNIMP_EXCP: return(decode_0c(ir,class,subop,fpregs)); case MAJOR_0E_EXCP: return(decode_0e(ir,class,subop,fpregs)); case MAJOR_06_EXCP: return(decode_06(ir,fpregs)); case MAJOR_26_EXCP: return(decode_26(ir,fpregs)); case MAJOR_2E_EXCP: return(decode_2e(ir,fpregs)); default: /* "crashme Night Gallery painting nr 2. (asm_crash.s). * This was fixed for multi-user kernels, but * workstation kernels had a panic here. This allowed * any arbitrary user to panic the kernel by executing * setting the FP exception registers to strange values * and generating an emulation trap. The emulation and * exception code must never be able to panic the * kernel. */ return(UNIMPLEMENTEDEXCEPTION); } } /* * this routine is called by $emulation_trap to emulate a coprocessor * instruction if one doesn't exist */ u_int emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[]) { u_int class, subop, major; u_int fpu_type_flags; /* All FP emulation code assumes that ints are 4-bytes in length */ VASSERT(sizeof(int) == 4); fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ major = get_major(ir); class = get_class(ir); if (class == 1) { if (fpu_type_flags & PA2_0_FPU_FLAG) subop = get_subop1_PA2_0(ir); else subop = get_subop1_PA1_1(ir); } else subop = get_subop(ir); switch (major) { case 0x0C: return(decode_0c(ir,class,subop,fpregs)); case 0x0E: return(decode_0e(ir,class,subop,fpregs)); case 0x06: return(decode_06(ir,fpregs)); case 0x26: return(decode_26(ir,fpregs)); case 0x2E: return(decode_2e(ir,fpregs)); default: return(PA83_UNIMP_EXCP); } } static u_int decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[]) { u_int r1,r2,t; /* operand register offsets */ u_int fmt; /* also sf for class 1 conversions */ u_int df; /* for class 1 conversions */ u_int *status; u_int retval, local_status; u_int fpu_type_flags; if (ir == COPR_INST) { fpregs[0] = EMULATION_VERSION << 11; return(NOEXCEPTION); } status = &fpregs[0]; /* fp status register */ local_status = fpregs[0]; /* and local copy */ r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int); if (r1 == 0) /* map fr0 source to constant zero */ r1 = fpzeroreg; t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int); if (t == 0 && class != 2) /* don't allow fr0 as a dest */ return(MAJOR_0C_EXCP); fmt = extru(ir,fpfmtpos,2); /* get fmt completer */ switch (class) { case 0: switch (subop) { case 0: /* COPR 0,0 emulated above*/ case 1: return(MAJOR_0C_EXCP); case 2: /* FCPY */ switch (fmt) { case 2: /* illegal */ return(MAJOR_0C_EXCP); case 3: /* quad */ t &= ~3; /* force to even reg #s */ r1 &= ~3; fpregs[t+3] = fpregs[r1+3]; fpregs[t+2] = fpregs[r1+2]; case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ fpregs[t] = fpregs[r1]; return(NOEXCEPTION); } case 3: /* FABS */ switch (fmt) { case 2: /* illegal */ return(MAJOR_0C_EXCP); case 3: /* quad */ t &= ~3; /* force to even reg #s */ r1 &= ~3; fpregs[t+3] = fpregs[r1+3]; fpregs[t+2] = fpregs[r1+2]; case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ /* copy and clear sign bit */ fpregs[t] = fpregs[r1] & 0x7fffffff; return(NOEXCEPTION); } case 6: /* FNEG */ switch (fmt) { case 2: /* illegal */ return(MAJOR_0C_EXCP); case 3: /* quad */ t &= ~3; /* force to even reg #s */ r1 &= ~3; fpregs[t+3] = fpregs[r1+3]; fpregs[t+2] = fpregs[r1+2]; case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ /* copy and invert sign bit */ fpregs[t] = fpregs[r1] ^ 0x80000000; return(NOEXCEPTION); } case 7: /* FNEGABS */ switch (fmt) { case 2: /* illegal */ return(MAJOR_0C_EXCP); case 3: /* quad */ t &= ~3; /* force to even reg #s */ r1 &= ~3; fpregs[t+3] = fpregs[r1+3]; fpregs[t+2] = fpregs[r1+2]; case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ /* copy and set sign bit */ fpregs[t] = fpregs[r1] | 0x80000000; return(NOEXCEPTION); } case 4: /* FSQRT */ switch (fmt) { case 0: return(sgl_fsqrt(&fpregs[r1],0, &fpregs[t],status)); case 1: return(dbl_fsqrt(&fpregs[r1],0, &fpregs[t],status)); case 2: case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 5: /* FRND */ switch (fmt) { case 0: return(sgl_frnd(&fpregs[r1],0, &fpregs[t],status)); case 1: return(dbl_frnd(&fpregs[r1],0, &fpregs[t],status)); case 2: case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } } /* end of switch (subop) */ case 1: /* class 1 */ df = extru(ir,fpdfpos,2); /* get dest format */ if ((df & 2) || (fmt & 2)) { /* * fmt's 2 and 3 are illegal of not implemented * quad conversions */ return(MAJOR_0C_EXCP); } /* * encode source and dest formats into 2 bits. * high bit is source, low bit is dest. * bit = 1 --> double precision */ fmt = (fmt << 1) | df; switch (subop) { case 0: /* FCNVFF */ switch(fmt) { case 0: /* sgl/sgl */ return(MAJOR_0C_EXCP); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvff(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvff(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(MAJOR_0C_EXCP); } case 1: /* FCNVXF */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); } case 2: /* FCNVFX */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); } case 3: /* FCNVFXT */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); } case 5: /* FCNVUF (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); } case 6: /* FCNVFU (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); } case 7: /* FCNVFUT (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); } case 4: /* undefined */ return(MAJOR_0C_EXCP); } /* end of switch subop */ case 2: /* class 2 */ fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int); if (r2 == 0) r2 = fpzeroreg; if (fpu_type_flags & PA2_0_FPU_FLAG) { /* FTEST if nullify bit set, otherwise FCMP */ if (extru(ir, fpnulpos, 1)) { /* FTEST */ switch (fmt) { case 0: /* * arg0 is not used * second param is the t field used for * ftest,acc and ftest,rej * third param is the subop (y-field) */ BUG(); /* Unsupported * return(ftest(0L,extru(ir,fptpos,5), * &fpregs[0],subop)); */ case 1: case 2: case 3: return(MAJOR_0C_EXCP); } } else { /* FCMP */ switch (fmt) { case 0: retval = sgl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 1: retval = dbl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } } } /* end of if for PA2.0 */ else { /* PA1.0 & PA1.1 */ switch (subop) { case 2: case 3: case 4: case 5: case 6: case 7: return(MAJOR_0C_EXCP); case 0: /* FCMP */ switch (fmt) { case 0: retval = sgl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 1: retval = dbl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 1: /* FTEST */ switch (fmt) { case 0: /* * arg0 is not used * second param is the t field used for * ftest,acc and ftest,rej * third param is the subop (y-field) */ BUG(); /* unsupported * return(ftest(0L,extru(ir,fptpos,5), * &fpregs[0],subop)); */ case 1: case 2: case 3: return(MAJOR_0C_EXCP); } } /* end of switch subop */ } /* end of else for PA1.0 & PA1.1 */ case 3: /* class 3 */ r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int); if (r2 == 0) r2 = fpzeroreg; switch (subop) { case 5: case 6: case 7: return(MAJOR_0C_EXCP); case 0: /* FADD */ switch (fmt) { case 0: return(sgl_fadd(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fadd(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 1: /* FSUB */ switch (fmt) { case 0: return(sgl_fsub(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fsub(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 2: /* FMPY */ switch (fmt) { case 0: return(sgl_fmpy(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fmpy(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 3: /* FDIV */ switch (fmt) { case 0: return(sgl_fdiv(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fdiv(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } case 4: /* FREM */ switch (fmt) { case 0: return(sgl_frem(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_frem(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 2: /* illegal */ case 3: /* quad not implemented */ return(MAJOR_0C_EXCP); } } /* end of class 3 switch */ } /* end of switch(class) */ /* If we get here, something is really wrong! */ return(MAJOR_0C_EXCP); } static u_int decode_0e(ir,class,subop,fpregs) u_int ir,class,subop; u_int fpregs[]; { u_int r1,r2,t; /* operand register offsets */ u_int fmt; /* also sf for class 1 conversions */ u_int df; /* dest format for class 1 conversions */ u_int *status; u_int retval, local_status; u_int fpu_type_flags; status = &fpregs[0]; local_status = fpregs[0]; r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1))); if (r1 == 0) r1 = fpzeroreg; t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1))); if (t == 0 && class != 2) return(MAJOR_0E_EXCP); if (class < 2) /* class 0 or 1 has 2 bit fmt */ fmt = extru(ir,fpfmtpos,2); else /* class 2 and 3 have 1 bit fmt */ fmt = extru(ir,fp0efmtpos,1); /* * An undefined combination, double precision accessing the * right half of a FPR, can get us into trouble. * Let's just force proper alignment on it. */ if (fmt == DBL) { r1 &= ~1; if (class != 1) t &= ~1; } switch (class) { case 0: switch (subop) { case 0: /* unimplemented */ case 1: return(MAJOR_0E_EXCP); case 2: /* FCPY */ switch (fmt) { case 2: case 3: return(MAJOR_0E_EXCP); case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ fpregs[t] = fpregs[r1]; return(NOEXCEPTION); } case 3: /* FABS */ switch (fmt) { case 2: case 3: return(MAJOR_0E_EXCP); case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ fpregs[t] = fpregs[r1] & 0x7fffffff; return(NOEXCEPTION); } case 6: /* FNEG */ switch (fmt) { case 2: case 3: return(MAJOR_0E_EXCP); case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ fpregs[t] = fpregs[r1] ^ 0x80000000; return(NOEXCEPTION); } case 7: /* FNEGABS */ switch (fmt) { case 2: case 3: return(MAJOR_0E_EXCP); case 1: /* double */ fpregs[t+1] = fpregs[r1+1]; case 0: /* single */ fpregs[t] = fpregs[r1] | 0x80000000; return(NOEXCEPTION); } case 4: /* FSQRT */ switch (fmt) { case 0: return(sgl_fsqrt(&fpregs[r1],0, &fpregs[t], status)); case 1: return(dbl_fsqrt(&fpregs[r1],0, &fpregs[t], status)); case 2: case 3: return(MAJOR_0E_EXCP); } case 5: /* FRMD */ switch (fmt) { case 0: return(sgl_frnd(&fpregs[r1],0, &fpregs[t], status)); case 1: return(dbl_frnd(&fpregs[r1],0, &fpregs[t], status)); case 2: case 3: return(MAJOR_0E_EXCP); } } /* end of switch (subop */ case 1: /* class 1 */ df = extru(ir,fpdfpos,2); /* get dest format */ /* * Fix Crashme problem (writing to 31R in double precision) * here too. */ if (df == DBL) { t &= ~1; } if ((df & 2) || (fmt & 2)) return(MAJOR_0E_EXCP); fmt = (fmt << 1) | df; switch (subop) { case 0: /* FCNVFF */ switch(fmt) { case 0: /* sgl/sgl */ return(MAJOR_0E_EXCP); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvff(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvff(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(MAJOR_0E_EXCP); } case 1: /* FCNVXF */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvxf(&fpregs[r1],0, &fpregs[t],status)); } case 2: /* FCNVFX */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfx(&fpregs[r1],0, &fpregs[t],status)); } case 3: /* FCNVFXT */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0, &fpregs[t],status)); } case 5: /* FCNVUF (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvuf(&fpregs[r1],0, &fpregs[t],status)); } case 6: /* FCNVFU (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfu(&fpregs[r1],0, &fpregs[t],status)); } case 7: /* FCNVFUT (PA2.0 only) */ switch(fmt) { case 0: /* sgl/sgl */ return(sgl_to_sgl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 1: /* sgl/dbl */ return(sgl_to_dbl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 2: /* dbl/sgl */ return(dbl_to_sgl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); case 3: /* dbl/dbl */ return(dbl_to_dbl_fcnvfut(&fpregs[r1],0, &fpregs[t],status)); } case 4: /* undefined */ return(MAJOR_0C_EXCP); } /* end of switch subop */ case 2: /* class 2 */ /* * Be careful out there. * Crashme can generate cases where FR31R is specified * as the source or target of a double precision operation. * Since we just pass the address of the floating-point * register to the emulation routines, this can cause * corruption of fpzeroreg. */ if (fmt == DBL) r2 = (extru(ir,fpr2pos,5)<<1); else r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1))); fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; if (r2 == 0) r2 = fpzeroreg; if (fpu_type_flags & PA2_0_FPU_FLAG) { /* FTEST if nullify bit set, otherwise FCMP */ if (extru(ir, fpnulpos, 1)) { /* FTEST */ /* not legal */ return(MAJOR_0E_EXCP); } else { /* FCMP */ switch (fmt) { /* * fmt is only 1 bit long */ case 0: retval = sgl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 1: retval = dbl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); } } } /* end of if for PA2.0 */ else { /* PA1.0 & PA1.1 */ switch (subop) { case 1: case 2: case 3: case 4: case 5: case 6: case 7: return(MAJOR_0E_EXCP); case 0: /* FCMP */ switch (fmt) { /* * fmt is only 1 bit long */ case 0: retval = sgl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); case 1: retval = dbl_fcmp(&fpregs[r1], &fpregs[r2],extru(ir,fptpos,5), &local_status); update_status_cbit(status,local_status, fpu_type_flags, subop); return(retval); } } /* end of switch subop */ } /* end of else for PA1.0 & PA1.1 */ case 3: /* class 3 */ /* * Be careful out there. * Crashme can generate cases where FR31R is specified * as the source or target of a double precision operation. * Since we just pass the address of the floating-point * register to the emulation routines, this can cause * corruption of fpzeroreg. */ if (fmt == DBL) r2 = (extru(ir,fpr2pos,5)<<1); else r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1))); if (r2 == 0) r2 = fpzeroreg; switch (subop) { case 5: case 6: case 7: return(MAJOR_0E_EXCP); /* * Note that fmt is only 1 bit for class 3 */ case 0: /* FADD */ switch (fmt) { case 0: return(sgl_fadd(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fadd(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); } case 1: /* FSUB */ switch (fmt) { case 0: return(sgl_fsub(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fsub(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); } case 2: /* FMPY or XMPYU */ /* * check for integer multiply (x bit set) */ if (extru(ir,fpxpos,1)) { /* * emulate XMPYU */ switch (fmt) { case 0: /* * bad instruction if t specifies * the right half of a register */ if (t & 1) return(MAJOR_0E_EXCP); BUG(); /* unsupported * impyu(&fpregs[r1],&fpregs[r2], * &fpregs[t]); */ return(NOEXCEPTION); case 1: return(MAJOR_0E_EXCP); } } else { /* FMPY */ switch (fmt) { case 0: return(sgl_fmpy(&fpregs[r1], &fpregs[r2],&fpregs[t],status)); case 1: return(dbl_fmpy(&fpregs[r1], &fpregs[r2],&fpregs[t],status)); } } case 3: /* FDIV */ switch (fmt) { case 0: return(sgl_fdiv(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_fdiv(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); } case 4: /* FREM */ switch (fmt) { case 0: return(sgl_frem(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); case 1: return(dbl_frem(&fpregs[r1],&fpregs[r2], &fpregs[t],status)); } } /* end of class 3 switch */ } /* end of switch(class) */ /* If we get here, something is really wrong! */ return(MAJOR_0E_EXCP); } /* * routine to decode the 06 (FMPYADD and FMPYCFXT) instruction */ static u_int decode_06(ir,fpregs) u_int ir; u_int fpregs[]; { u_int rm1, rm2, tm, ra, ta; /* operands */ u_int fmt; u_int error = 0; u_int status; u_int fpu_type_flags; union { double dbl; float flt; struct { u_int i1; u_int i2; } ints; } mtmp, atmp; status = fpregs[0]; /* use a local copy of status reg */ fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */ if (fmt == 0) { /* DBL */ rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int); if (rm1 == 0) rm1 = fpzeroreg; rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int); if (rm2 == 0) rm2 = fpzeroreg; tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int); if (tm == 0) return(MAJOR_06_EXCP); ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int); ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int); if (ta == 0) return(MAJOR_06_EXCP); if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) { if (ra == 0) { /* special case FMPYCFXT, see sgl case below */ if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2], &mtmp.ints.i1,&status)) error = 1; if (dbl_to_sgl_fcnvfxt(&fpregs[ta], &atmp.ints.i1,&atmp.ints.i1,&status)) error = 1; } else { if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, &status)) error = 1; if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, &status)) error = 1; } } else { if (ra == 0) ra = fpzeroreg; if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, &status)) error = 1; if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, &status)) error = 1; } if (error) return(MAJOR_06_EXCP); else { /* copy results */ fpregs[tm] = mtmp.ints.i1; fpregs[tm+1] = mtmp.ints.i2; fpregs[ta] = atmp.ints.i1; fpregs[ta+1] = atmp.ints.i2; fpregs[0] = status; return(NOEXCEPTION); } } else { /* SGL */ /* * calculate offsets for single precision numbers * See table 6-14 in PA-89 architecture for mapping */ rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */ rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */ rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */ rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */ tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */ tm |= extru(ir,fptmpos-4,1); /* add right word offset */ ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */ ra |= extru(ir,fprapos-4,1); /* add right word offset */ ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */ ta |= extru(ir,fptapos-4,1); /* add right word offset */ if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) { /* special case FMPYCFXT (really 0) * This instruction is only present on the Timex and * Rolex fpu's in so if it is the special case and * one of these fpu's we run the FMPYCFXT instruction */ if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, &status)) error = 1; if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1, &atmp.ints.i1,&status)) error = 1; } else { if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, &status)) error = 1; if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, &status)) error = 1; } if (error) return(MAJOR_06_EXCP); else { /* copy results */ fpregs[tm] = mtmp.ints.i1; fpregs[ta] = atmp.ints.i1; fpregs[0] = status; return(NOEXCEPTION); } } } /* * routine to decode the 26 (FMPYSUB) instruction */ static u_int decode_26(ir,fpregs) u_int ir; u_int fpregs[]; { u_int rm1, rm2, tm, ra, ta; /* operands */ u_int fmt; u_int error = 0; u_int status; union { double dbl; float flt; struct { u_int i1; u_int i2; } ints; } mtmp, atmp; status = fpregs[0]; fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */ if (fmt == 0) { /* DBL */ rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int); if (rm1 == 0) rm1 = fpzeroreg; rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int); if (rm2 == 0) rm2 = fpzeroreg; tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int); if (tm == 0) return(MAJOR_26_EXCP); ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int); if (ra == 0) return(MAJOR_26_EXCP); ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int); if (ta == 0) return(MAJOR_26_EXCP); if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status)) error = 1; if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status)) error = 1; if (error) return(MAJOR_26_EXCP); else { /* copy results */ fpregs[tm] = mtmp.ints.i1; fpregs[tm+1] = mtmp.ints.i2; fpregs[ta] = atmp.ints.i1; fpregs[ta+1] = atmp.ints.i2; fpregs[0] = status; return(NOEXCEPTION); } } else { /* SGL */ /* * calculate offsets for single precision numbers * See table 6-14 in PA-89 architecture for mapping */ rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */ rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */ rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */ rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */ tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */ tm |= extru(ir,fptmpos-4,1); /* add right word offset */ ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */ ra |= extru(ir,fprapos-4,1); /* add right word offset */ ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */ ta |= extru(ir,fptapos-4,1); /* add right word offset */ if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status)) error = 1; if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status)) error = 1; if (error) return(MAJOR_26_EXCP); else { /* copy results */ fpregs[tm] = mtmp.ints.i1; fpregs[ta] = atmp.ints.i1; fpregs[0] = status; return(NOEXCEPTION); } } } /* * routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions */ static u_int decode_2e(ir,fpregs) u_int ir; u_int fpregs[]; { u_int rm1, rm2, ra, t; /* operands */ u_int fmt; fmt = extru(ir,fpfmtpos,1); /* get fmt completer */ if (fmt == DBL) { /* DBL */ rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int); if (rm1 == 0) rm1 = fpzeroreg; rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int); if (rm2 == 0) rm2 = fpzeroreg; ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) * sizeof(double)/sizeof(u_int); if (ra == 0) ra = fpzeroreg; t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int); if (t == 0) return(MAJOR_2E_EXCP); if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */ return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2], &fpregs[ra], &fpregs[0], &fpregs[t])); } else { return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2], &fpregs[ra], &fpregs[0], &fpregs[t])); } } /* end DBL */ else { /* SGL */ rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1)); if (rm1 == 0) rm1 = fpzeroreg; rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1)); if (rm2 == 0) rm2 = fpzeroreg; ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3); if (ra == 0) ra = fpzeroreg; t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1))); if (t == 0) return(MAJOR_2E_EXCP); if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */ return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2], &fpregs[ra], &fpregs[0], &fpregs[t])); } else { return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2], &fpregs[ra], &fpregs[0], &fpregs[t])); } } /* end SGL */ } /* * update_status_cbit * * This routine returns the correct FP status register value in * *status, based on the C-bit & V-bit returned by the FCMP * emulation routine in new_status. The architecture type * (PA83, PA89 or PA2.0) is available in fpu_type. The y_field * and the architecture type are used to determine what flavor * of FCMP is being emulated. */ static void update_status_cbit(status, new_status, fpu_type, y_field) u_int *status, new_status; u_int fpu_type; u_int y_field; { /* * For PA89 FPU's which implement the Compare Queue and * for PA2.0 FPU's, update the Compare Queue if the y-field = 0, * otherwise update the specified bit in the Compare Array. * Note that the y-field will always be 0 for non-PA2.0 FPU's. */ if ((fpu_type & TIMEX_EXTEN_FLAG) || (fpu_type & ROLEX_EXTEN_FLAG) || (fpu_type & PA2_0_FPU_FLAG)) { if (y_field == 0) { *status = ((*status & 0x04000000) >> 5) | /* old Cbit */ ((*status & 0x003ff000) >> 1) | /* old CQ */ (new_status & 0xffc007ff); /* all other bits*/ } else { *status = (*status & 0x04000000) | /* old Cbit */ ((new_status & 0x04000000) >> (y_field+4)) | (new_status & ~0x04000000 & /* other bits */ ~(0x04000000 >> (y_field+4))); } } /* if PA83, just update the C-bit */ else { *status = new_status; } }