/* SCTP kernel reference Implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * * This file is part of the SCTP kernel reference Implementation * * These functions work with the state functions in sctp_sm_statefuns.c * to implement that state operations. These functions implement the * steps which require modifying existing data structures. * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <lksctp-developers@lists.sourceforge.net> * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@austin.ibm.com> * Hui Huang <hui.huang@nokia.com> * Dajiang Zhang <dajiang.zhang@nokia.com> * Daisy Chang <daisyc@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include <linux/skbuff.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/ip.h> #include <net/sock.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> static int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype, sctp_state_t state, struct sctp_endpoint *ep, struct sctp_association *asoc, void *event_arg, sctp_disposition_t status, sctp_cmd_seq_t *commands, int gfp); static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, sctp_state_t state, struct sctp_endpoint *ep, struct sctp_association *asoc, void *event_arg, sctp_disposition_t status, sctp_cmd_seq_t *commands, int gfp); /******************************************************************** * Helper functions ********************************************************************/ /* A helper function for delayed processing of INET ECN CE bit. */ static void sctp_do_ecn_ce_work(struct sctp_association *asoc, __u32 lowest_tsn) { /* Save the TSN away for comparison when we receive CWR */ asoc->last_ecne_tsn = lowest_tsn; asoc->need_ecne = 1; } /* Helper function for delayed processing of SCTP ECNE chunk. */ /* RFC 2960 Appendix A * * RFC 2481 details a specific bit for a sender to send in * the header of its next outbound TCP segment to indicate to * its peer that it has reduced its congestion window. This * is termed the CWR bit. For SCTP the same indication is made * by including the CWR chunk. This chunk contains one data * element, i.e. the TSN number that was sent in the ECNE chunk. * This element represents the lowest TSN number in the datagram * that was originally marked with the CE bit. */ static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, __u32 lowest_tsn, struct sctp_chunk *chunk) { struct sctp_chunk *repl; /* Our previously transmitted packet ran into some congestion * so we should take action by reducing cwnd and ssthresh * and then ACK our peer that we we've done so by * sending a CWR. */ /* First, try to determine if we want to actually lower * our cwnd variables. Only lower them if the ECNE looks more * recent than the last response. */ if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { struct sctp_transport *transport; /* Find which transport's congestion variables * need to be adjusted. */ transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); /* Update the congestion variables. */ if (transport) sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_ECNE); asoc->last_cwr_tsn = lowest_tsn; } /* Always try to quiet the other end. In case of lost CWR, * resend last_cwr_tsn. */ repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); /* If we run out of memory, it will look like a lost CWR. We'll * get back in sync eventually. */ return repl; } /* Helper function to do delayed processing of ECN CWR chunk. */ static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, __u32 lowest_tsn) { /* Turn off ECNE getting auto-prepended to every outgoing * packet */ asoc->need_ecne = 0; } /* Generate SACK if necessary. We call this at the end of a packet. */ static int sctp_gen_sack(struct sctp_association *asoc, int force, sctp_cmd_seq_t *commands) { __u32 ctsn, max_tsn_seen; struct sctp_chunk *sack; int error = 0; if (force) asoc->peer.sack_needed = 1; ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); /* From 12.2 Parameters necessary per association (i.e. the TCB): * * Ack State : This flag indicates if the next received packet * : is to be responded to with a SACK. ... * : When DATA chunks are out of order, SACK's * : are not delayed (see Section 6). * * [This is actually not mentioned in Section 6, but we * implement it here anyway. --piggy] */ if (max_tsn_seen != ctsn) asoc->peer.sack_needed = 1; /* From 6.2 Acknowledgement on Reception of DATA Chunks: * * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, * an acknowledgement SHOULD be generated for at least every * second packet (not every second DATA chunk) received, and * SHOULD be generated within 200 ms of the arrival of any * unacknowledged DATA chunk. ... */ if (!asoc->peer.sack_needed) { /* We will need a SACK for the next packet. */ asoc->peer.sack_needed = 1; goto out; } else { if (asoc->a_rwnd > asoc->rwnd) asoc->a_rwnd = asoc->rwnd; sack = sctp_make_sack(asoc); if (!sack) goto nomem; asoc->peer.sack_needed = 0; error = sctp_outq_tail(&asoc->outqueue, sack); /* Stop the SACK timer. */ sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); } out: return error; nomem: error = -ENOMEM; return error; } /* When the T3-RTX timer expires, it calls this function to create the * relevant state machine event. */ void sctp_generate_t3_rtx_event(unsigned long peer) { int error; struct sctp_transport *transport = (struct sctp_transport *) peer; struct sctp_association *asoc = transport->asoc; /* Check whether a task is in the sock. */ sctp_bh_lock_sock(asoc->base.sk); if (sock_owned_by_user(asoc->base.sk)) { SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__); /* Try again later. */ if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) sctp_transport_hold(transport); goto out_unlock; } /* Is this transport really dead and just waiting around for * the timer to let go of the reference? */ if (transport->dead) goto out_unlock; /* Run through the state machine. */ error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); if (error) asoc->base.sk->sk_err = -error; out_unlock: sctp_bh_unlock_sock(asoc->base.sk); sctp_transport_put(transport); } /* This is a sa interface for producing timeout events. It works * for timeouts which use the association as their parameter. */ static void sctp_generate_timeout_event(struct sctp_association *asoc, sctp_event_timeout_t timeout_type) { int error = 0; sctp_bh_lock_sock(asoc->base.sk); if (sock_owned_by_user(asoc->base.sk)) { SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", __FUNCTION__, timeout_type); /* Try again later. */ if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) sctp_association_hold(asoc); goto out_unlock; } /* Is this association really dead and just waiting around for * the timer to let go of the reference? */ if (asoc->base.dead) goto out_unlock; /* Run through the state machine. */ error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, SCTP_ST_TIMEOUT(timeout_type), asoc->state, asoc->ep, asoc, (void *)timeout_type, GFP_ATOMIC); if (error) asoc->base.sk->sk_err = -error; out_unlock: sctp_bh_unlock_sock(asoc->base.sk); sctp_association_put(asoc); } static void sctp_generate_t1_cookie_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); } static void sctp_generate_t1_init_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); } static void sctp_generate_t2_shutdown_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); } static void sctp_generate_t4_rto_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); } static void sctp_generate_t5_shutdown_guard_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *)data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); } /* sctp_generate_t5_shutdown_guard_event() */ static void sctp_generate_autoclose_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); } /* Generate a heart beat event. If the sock is busy, reschedule. Make * sure that the transport is still valid. */ void sctp_generate_heartbeat_event(unsigned long data) { int error = 0; struct sctp_transport *transport = (struct sctp_transport *) data; struct sctp_association *asoc = transport->asoc; sctp_bh_lock_sock(asoc->base.sk); if (sock_owned_by_user(asoc->base.sk)) { SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__); /* Try again later. */ if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) sctp_transport_hold(transport); goto out_unlock; } /* Is this structure just waiting around for us to actually * get destroyed? */ if (transport->dead) goto out_unlock; error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); if (error) asoc->base.sk->sk_err = -error; out_unlock: sctp_bh_unlock_sock(asoc->base.sk); sctp_transport_put(transport); } /* Inject a SACK Timeout event into the state machine. */ static void sctp_generate_sack_event(unsigned long data) { struct sctp_association *asoc = (struct sctp_association *) data; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); } sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { NULL, sctp_generate_t1_cookie_event, sctp_generate_t1_init_event, sctp_generate_t2_shutdown_event, NULL, sctp_generate_t4_rto_event, sctp_generate_t5_shutdown_guard_event, sctp_generate_heartbeat_event, sctp_generate_sack_event, sctp_generate_autoclose_event, }; /* RFC 2960 8.2 Path Failure Detection * * When its peer endpoint is multi-homed, an endpoint should keep a * error counter for each of the destination transport addresses of the * peer endpoint. * * Each time the T3-rtx timer expires on any address, or when a * HEARTBEAT sent to an idle address is not acknowledged within a RTO, * the error counter of that destination address will be incremented. * When the value in the error counter exceeds the protocol parameter * 'Path.Max.Retrans' of that destination address, the endpoint should * mark the destination transport address as inactive, and a * notification SHOULD be sent to the upper layer. * */ static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, struct sctp_transport *transport) { /* The check for association's overall error counter exceeding the * threshold is done in the state function. */ asoc->overall_error_count++; if (transport->state != SCTP_INACTIVE && (transport->error_count++ >= transport->max_retrans)) { SCTP_DEBUG_PRINTK_IPADDR("transport_strike:association %p", " transport IP: port:%d failed.\n", asoc, (&transport->ipaddr), transport->ipaddr.v4.sin_port); sctp_assoc_control_transport(asoc, transport, SCTP_TRANSPORT_DOWN, SCTP_FAILED_THRESHOLD); } /* E2) For the destination address for which the timer * expires, set RTO <- RTO * 2 ("back off the timer"). The * maximum value discussed in rule C7 above (RTO.max) may be * used to provide an upper bound to this doubling operation. */ transport->rto = min((transport->rto * 2), transport->asoc->rto_max); } /* Worker routine to handle INIT command failure. */ static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, struct sctp_association *asoc, unsigned error) { struct sctp_ulpevent *event; event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, (__u16)error, 0, 0, GFP_ATOMIC); if (event) sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(event)); sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, SCTP_STATE(SCTP_STATE_CLOSED)); /* SEND_FAILED sent later when cleaning up the association. */ asoc->outqueue.error = error; sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); } /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, struct sctp_association *asoc, sctp_event_t event_type, sctp_subtype_t subtype, struct sctp_chunk *chunk, unsigned error) { struct sctp_ulpevent *event; /* Cancel any partial delivery in progress. */ sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, (__u16)error, 0, 0, GFP_ATOMIC); if (event) sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(event)); sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, SCTP_STATE(SCTP_STATE_CLOSED)); /* Set sk_err to ECONNRESET on a 1-1 style socket. */ if (!sctp_style(asoc->base.sk, UDP)) asoc->base.sk->sk_err = ECONNRESET; /* SEND_FAILED sent later when cleaning up the association. */ asoc->outqueue.error = error; sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); } /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT * inside the cookie. In reality, this is only used for INIT-ACK processing * since all other cases use "temporary" associations and can do all * their work in statefuns directly. */ static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, struct sctp_association *asoc, struct sctp_chunk *chunk, sctp_init_chunk_t *peer_init, int gfp) { int error; /* We only process the init as a sideeffect in a single * case. This is when we process the INIT-ACK. If we * fail during INIT processing (due to malloc problems), * just return the error and stop processing the stack. */ if (!sctp_process_init(asoc, chunk->chunk_hdr->type, sctp_source(chunk), peer_init, gfp)) error = -ENOMEM; else error = 0; return error; } /* Helper function to break out starting up of heartbeat timers. */ static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, struct sctp_association *asoc) { struct sctp_transport *t; struct list_head *pos; /* Start a heartbeat timer for each transport on the association. * hold a reference on the transport to make sure none of * the needed data structures go away. */ list_for_each(pos, &asoc->peer.transport_addr_list) { t = list_entry(pos, struct sctp_transport, transports); if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) sctp_transport_hold(t); } } static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, struct sctp_association *asoc) { struct sctp_transport *t; struct list_head *pos; /* Stop all heartbeat timers. */ list_for_each(pos, &asoc->peer.transport_addr_list) { t = list_entry(pos, struct sctp_transport, transports); if (del_timer(&t->hb_timer)) sctp_transport_put(t); } } /* Helper function to stop any pending T3-RTX timers */ static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, struct sctp_association *asoc) { struct sctp_transport *t; struct list_head *pos; list_for_each(pos, &asoc->peer.transport_addr_list) { t = list_entry(pos, struct sctp_transport, transports); if (timer_pending(&t->T3_rtx_timer) && del_timer(&t->T3_rtx_timer)) { sctp_transport_put(t); } } } /* Helper function to update the heartbeat timer. */ static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_transport *t) { /* Update the heartbeat timer. */ if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) sctp_transport_hold(t); } /* Helper function to handle the reception of an HEARTBEAT ACK. */ static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_transport *t, struct sctp_chunk *chunk) { sctp_sender_hb_info_t *hbinfo; /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the * HEARTBEAT should clear the error counter of the destination * transport address to which the HEARTBEAT was sent. * The association's overall error count is also cleared. */ t->error_count = 0; t->asoc->overall_error_count = 0; /* Mark the destination transport address as active if it is not so * marked. */ if (t->state == SCTP_INACTIVE) sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, SCTP_HEARTBEAT_SUCCESS); /* The receiver of the HEARTBEAT ACK should also perform an * RTT measurement for that destination transport address * using the time value carried in the HEARTBEAT ACK chunk. */ hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); } /* Helper function to do a transport reset at the expiry of the hearbeat * timer. */ static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_transport *t) { sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); /* Mark one strike against a transport. */ sctp_do_8_2_transport_strike(asoc, t); } /* Helper function to process the process SACK command. */ static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_sackhdr *sackh) { int err; if (sctp_outq_sack(&asoc->outqueue, sackh)) { /* There are no more TSNs awaiting SACK. */ err = sctp_do_sm(SCTP_EVENT_T_OTHER, SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), asoc->state, asoc->ep, asoc, NULL, GFP_ATOMIC); } else { /* Windows may have opened, so we need * to check if we have DATA to transmit */ err = sctp_outq_flush(&asoc->outqueue, 0); } return err; } /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set * the transport for a shutdown chunk. */ static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_chunk *chunk) { struct sctp_transport *t; t = sctp_assoc_choose_shutdown_transport(asoc); asoc->shutdown_last_sent_to = t; asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; chunk->transport = t; } /* Helper function to change the state of an association. */ static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, sctp_state_t state) { struct sock *sk = asoc->base.sk; asoc->state = state; SCTP_DEBUG_PRINTK("sctp_cmd_new_state: asoc %p[%s]\n", asoc, sctp_state_tbl[state]); if (sctp_style(sk, TCP)) { /* Change the sk->sk_state of a TCP-style socket that has * sucessfully completed a connect() call. */ if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) sk->sk_state = SCTP_SS_ESTABLISHED; /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ if (sctp_state(asoc, SHUTDOWN_RECEIVED) && sctp_sstate(sk, ESTABLISHED)) sk->sk_shutdown |= RCV_SHUTDOWN; } if (sctp_state(asoc, COOKIE_WAIT)) { /* Reset init timeouts since they may have been * increased due to timer expirations. */ asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->ep->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT]; asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->ep->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE]; } if (sctp_state(asoc, ESTABLISHED) || sctp_state(asoc, CLOSED) || sctp_state(asoc, SHUTDOWN_RECEIVED)) { /* Wake up any processes waiting in the asoc's wait queue in * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). */ if (waitqueue_active(&asoc->wait)) wake_up_interruptible(&asoc->wait); /* Wake up any processes waiting in the sk's sleep queue of * a TCP-style or UDP-style peeled-off socket in * sctp_wait_for_accept() or sctp_wait_for_packet(). * For a UDP-style socket, the waiters are woken up by the * notifications. */ if (!sctp_style(sk, UDP)) sk->sk_state_change(sk); } } /* Helper function to delete an association. */ static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; /* If it is a non-temporary association belonging to a TCP-style * listening socket that is not closed, do not free it so that accept() * can pick it up later. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) return; sctp_unhash_established(asoc); sctp_association_free(asoc); } /* * ADDIP Section 4.1 ASCONF Chunk Procedures * A4) Start a T-4 RTO timer, using the RTO value of the selected * destination address (we use active path instead of primary path just * because primary path may be inactive. */ static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_chunk *chunk) { struct sctp_transport *t; t = asoc->peer.active_path; asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; chunk->transport = t; } /* Process an incoming Operation Error Chunk. */ static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, struct sctp_association *asoc, struct sctp_chunk *chunk) { struct sctp_operr_chunk *operr_chunk; struct sctp_errhdr *err_hdr; operr_chunk = (struct sctp_operr_chunk *)chunk->chunk_hdr; err_hdr = &operr_chunk->err_hdr; switch (err_hdr->cause) { case SCTP_ERROR_UNKNOWN_CHUNK: { struct sctp_chunkhdr *unk_chunk_hdr; unk_chunk_hdr = (struct sctp_chunkhdr *)err_hdr->variable; switch (unk_chunk_hdr->type) { /* ADDIP 4.1 A9) If the peer responds to an ASCONF with an * ERROR chunk reporting that it did not recognized the ASCONF * chunk type, the sender of the ASCONF MUST NOT send any * further ASCONF chunks and MUST stop its T-4 timer. */ case SCTP_CID_ASCONF: asoc->peer.asconf_capable = 0; sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); break; default: break; } break; } default: break; } } /* Process variable FWDTSN chunk information. */ static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk) { struct sctp_fwdtsn_skip *skip; /* Walk through all the skipped SSNs */ sctp_walk_fwdtsn(skip, chunk) { sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); } return; } /* Helper function to remove the association non-primary peer * transports. */ static void sctp_cmd_del_non_primary(struct sctp_association *asoc) { struct sctp_transport *t; struct list_head *pos; struct list_head *temp; list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { t = list_entry(pos, struct sctp_transport, transports); if (!sctp_cmp_addr_exact(&t->ipaddr, &asoc->peer.primary_addr)) { sctp_assoc_del_peer(asoc, &t->ipaddr); } } return; } /* These three macros allow us to pull the debugging code out of the * main flow of sctp_do_sm() to keep attention focused on the real * functionality there. */ #define DEBUG_PRE \ SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ "ep %p, %s, %s, asoc %p[%s], %s\n", \ ep, sctp_evttype_tbl[event_type], \ (*debug_fn)(subtype), asoc, \ sctp_state_tbl[state], state_fn->name) #define DEBUG_POST \ SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ "asoc %p, status: %s\n", \ asoc, sctp_status_tbl[status]) #define DEBUG_POST_SFX \ SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ error, asoc, \ sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) /* * This is the master state machine processing function. * * If you want to understand all of lksctp, this is a * good place to start. */ int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, sctp_state_t state, struct sctp_endpoint *ep, struct sctp_association *asoc, void *event_arg, int gfp) { sctp_cmd_seq_t commands; const sctp_sm_table_entry_t *state_fn; sctp_disposition_t status; int error = 0; typedef const char *(printfn_t)(sctp_subtype_t); static printfn_t *table[] = { NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, }; printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; /* Look up the state function, run it, and then process the * side effects. These three steps are the heart of lksctp. */ state_fn = sctp_sm_lookup_event(event_type, state, subtype); sctp_init_cmd_seq(&commands); DEBUG_PRE; status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); DEBUG_POST; error = sctp_side_effects(event_type, subtype, state, ep, asoc, event_arg, status, &commands, gfp); DEBUG_POST_SFX; return error; } #undef DEBUG_PRE #undef DEBUG_POST /***************************************************************** * This the master state function side effect processing function. *****************************************************************/ static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, sctp_state_t state, struct sctp_endpoint *ep, struct sctp_association *asoc, void *event_arg, sctp_disposition_t status, sctp_cmd_seq_t *commands, int gfp) { int error; /* FIXME - Most of the dispositions left today would be categorized * as "exceptional" dispositions. For those dispositions, it * may not be proper to run through any of the commands at all. * For example, the command interpreter might be run only with * disposition SCTP_DISPOSITION_CONSUME. */ if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, ep, asoc, event_arg, status, commands, gfp))) goto bail; switch (status) { case SCTP_DISPOSITION_DISCARD: SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " "event_type %d, event_id %d\n", state, event_type, subtype.chunk); break; case SCTP_DISPOSITION_NOMEM: /* We ran out of memory, so we need to discard this * packet. */ /* BUG--we should now recover some memory, probably by * reneging... */ error = -ENOMEM; break; case SCTP_DISPOSITION_DELETE_TCB: /* This should now be a command. */ break; case SCTP_DISPOSITION_CONSUME: case SCTP_DISPOSITION_ABORT: /* * We should no longer have much work to do here as the * real work has been done as explicit commands above. */ break; case SCTP_DISPOSITION_VIOLATION: printk(KERN_ERR "sctp protocol violation state %d " "chunkid %d\n", state, subtype.chunk); break; case SCTP_DISPOSITION_NOT_IMPL: printk(KERN_WARNING "sctp unimplemented feature in state %d, " "event_type %d, event_id %d\n", state, event_type, subtype.chunk); break; case SCTP_DISPOSITION_BUG: printk(KERN_ERR "sctp bug in state %d, " "event_type %d, event_id %d\n", state, event_type, subtype.chunk); BUG(); break; default: printk(KERN_ERR "sctp impossible disposition %d " "in state %d, event_type %d, event_id %d\n", status, state, event_type, subtype.chunk); BUG(); break; }; bail: return error; } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ /* This is the side-effect interpreter. */ static int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype, sctp_state_t state, struct sctp_endpoint *ep, struct sctp_association *asoc, void *event_arg, sctp_disposition_t status, sctp_cmd_seq_t *commands, int gfp) { int error = 0; int force; sctp_cmd_t *cmd; struct sctp_chunk *new_obj; struct sctp_chunk *chunk = NULL; struct sctp_packet *packet; struct list_head *pos; struct timer_list *timer; unsigned long timeout; struct sctp_transport *t; struct sctp_sackhdr sackh; int local_cork = 0; if (SCTP_EVENT_T_TIMEOUT != event_type) chunk = (struct sctp_chunk *) event_arg; /* Note: This whole file is a huge candidate for rework. * For example, each command could either have its own handler, so * the loop would look like: * while (cmds) * cmd->handle(x, y, z) * --jgrimm */ while (NULL != (cmd = sctp_next_cmd(commands))) { switch (cmd->verb) { case SCTP_CMD_NOP: /* Do nothing. */ break; case SCTP_CMD_NEW_ASOC: /* Register a new association. */ if (local_cork) { sctp_outq_uncork(&asoc->outqueue); local_cork = 0; } asoc = cmd->obj.ptr; /* Register with the endpoint. */ sctp_endpoint_add_asoc(ep, asoc); sctp_hash_established(asoc); break; case SCTP_CMD_UPDATE_ASSOC: sctp_assoc_update(asoc, cmd->obj.ptr); break; case SCTP_CMD_PURGE_OUTQUEUE: sctp_outq_teardown(&asoc->outqueue); break; case SCTP_CMD_DELETE_TCB: if (local_cork) { sctp_outq_uncork(&asoc->outqueue); local_cork = 0; } /* Delete the current association. */ sctp_cmd_delete_tcb(commands, asoc); asoc = NULL; break; case SCTP_CMD_NEW_STATE: /* Enter a new state. */ sctp_cmd_new_state(commands, asoc, cmd->obj.state); break; case SCTP_CMD_REPORT_TSN: /* Record the arrival of a TSN. */ sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32); break; case SCTP_CMD_REPORT_FWDTSN: /* Move the Cumulattive TSN Ack ahead. */ sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); /* Abort any in progress partial delivery. */ sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); break; case SCTP_CMD_PROCESS_FWDTSN: sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); break; case SCTP_CMD_GEN_SACK: /* Generate a Selective ACK. * The argument tells us whether to just count * the packet and MAYBE generate a SACK, or * force a SACK out. */ force = cmd->obj.i32; error = sctp_gen_sack(asoc, force, commands); break; case SCTP_CMD_PROCESS_SACK: /* Process an inbound SACK. */ error = sctp_cmd_process_sack(commands, asoc, cmd->obj.ptr); break; case SCTP_CMD_GEN_INIT_ACK: /* Generate an INIT ACK chunk. */ new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 0); if (!new_obj) goto nomem; sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(new_obj)); break; case SCTP_CMD_PEER_INIT: /* Process a unified INIT from the peer. * Note: Only used during INIT-ACK processing. If * there is an error just return to the outter * layer which will bail. */ error = sctp_cmd_process_init(commands, asoc, chunk, cmd->obj.ptr, gfp); break; case SCTP_CMD_GEN_COOKIE_ECHO: /* Generate a COOKIE ECHO chunk. */ new_obj = sctp_make_cookie_echo(asoc, chunk); if (!new_obj) { if (cmd->obj.ptr) sctp_chunk_free(cmd->obj.ptr); goto nomem; } sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(new_obj)); /* If there is an ERROR chunk to be sent along with * the COOKIE_ECHO, send it, too. */ if (cmd->obj.ptr) sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(cmd->obj.ptr)); /* FIXME - Eventually come up with a cleaner way to * enabling COOKIE-ECHO + DATA bundling during * multihoming stale cookie scenarios, the following * command plays with asoc->peer.retran_path to * avoid the problem of sending the COOKIE-ECHO and * DATA in different paths, which could result * in the association being ABORTed if the DATA chunk * is processed first by the server. Checking the * init error counter simply causes this command * to be executed only during failed attempts of * association establishment. */ if ((asoc->peer.retran_path != asoc->peer.primary_path) && (asoc->init_err_counter > 0)) { sctp_add_cmd_sf(commands, SCTP_CMD_FORCE_PRIM_RETRAN, SCTP_NULL()); } break; case SCTP_CMD_GEN_SHUTDOWN: /* Generate SHUTDOWN when in SHUTDOWN_SENT state. * Reset error counts. */ asoc->overall_error_count = 0; /* Generate a SHUTDOWN chunk. */ new_obj = sctp_make_shutdown(asoc, chunk); if (!new_obj) goto nomem; sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(new_obj)); break; case SCTP_CMD_CHUNK_ULP: /* Send a chunk to the sockets layer. */ SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", "chunk_up:", cmd->obj.ptr, "ulpq:", &asoc->ulpq); sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, GFP_ATOMIC); break; case SCTP_CMD_EVENT_ULP: /* Send a notification to the sockets layer. */ SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", "event_up:",cmd->obj.ptr, "ulpq:",&asoc->ulpq); sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); break; case SCTP_CMD_REPLY: /* If an caller has not already corked, do cork. */ if (!asoc->outqueue.cork) { sctp_outq_cork(&asoc->outqueue); local_cork = 1; } /* Send a chunk to our peer. */ error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); break; case SCTP_CMD_SEND_PKT: /* Send a full packet to our peer. */ packet = cmd->obj.ptr; sctp_packet_transmit(packet); sctp_ootb_pkt_free(packet); break; case SCTP_CMD_RETRAN: /* Mark a transport for retransmission. */ sctp_retransmit(&asoc->outqueue, cmd->obj.transport, SCTP_RTXR_T3_RTX); break; case SCTP_CMD_TRANSMIT: /* Kick start transmission. */ error = sctp_outq_uncork(&asoc->outqueue); local_cork = 0; break; case SCTP_CMD_ECN_CE: /* Do delayed CE processing. */ sctp_do_ecn_ce_work(asoc, cmd->obj.u32); break; case SCTP_CMD_ECN_ECNE: /* Do delayed ECNE processing. */ new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, chunk); if (new_obj) sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(new_obj)); break; case SCTP_CMD_ECN_CWR: /* Do delayed CWR processing. */ sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); break; case SCTP_CMD_SETUP_T2: sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); break; case SCTP_CMD_TIMER_START: timer = &asoc->timers[cmd->obj.to]; timeout = asoc->timeouts[cmd->obj.to]; if (!timeout) BUG(); timer->expires = jiffies + timeout; sctp_association_hold(asoc); add_timer(timer); break; case SCTP_CMD_TIMER_RESTART: timer = &asoc->timers[cmd->obj.to]; timeout = asoc->timeouts[cmd->obj.to]; if (!mod_timer(timer, jiffies + timeout)) sctp_association_hold(asoc); break; case SCTP_CMD_TIMER_STOP: timer = &asoc->timers[cmd->obj.to]; if (timer_pending(timer) && del_timer(timer)) sctp_association_put(asoc); break; case SCTP_CMD_INIT_CHOOSE_TRANSPORT: chunk = cmd->obj.ptr; t = sctp_assoc_choose_init_transport(asoc); asoc->init_last_sent_to = t; chunk->transport = t; t->init_sent_count++; break; case SCTP_CMD_INIT_RESTART: /* Do the needed accounting and updates * associated with restarting an initialization * timer. Only multiply the timeout by two if * all transports have been tried at the current * timeout. */ t = asoc->init_last_sent_to; asoc->init_err_counter++; if (t->init_sent_count > (asoc->init_cycle + 1)) { asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] *= 2; if (asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] > asoc->max_init_timeo) { asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->max_init_timeo; } asoc->init_cycle++; SCTP_DEBUG_PRINTK( "T1 INIT Timeout adjustment" " init_err_counter: %d" " cycle: %d" " timeout: %d\n", asoc->init_err_counter, asoc->init_cycle, asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT]); } sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); break; case SCTP_CMD_COOKIEECHO_RESTART: /* Do the needed accounting and updates * associated with restarting an initialization * timer. Only multiply the timeout by two if * all transports have been tried at the current * timeout. */ asoc->init_err_counter++; asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] *= 2; if (asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] > asoc->max_init_timeo) { asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->max_init_timeo; } SCTP_DEBUG_PRINTK( "T1 COOKIE Timeout adjustment" " init_err_counter: %d" " timeout: %d\n", asoc->init_err_counter, asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE]); /* If we've sent any data bundled with * COOKIE-ECHO we need to resend. */ list_for_each(pos, &asoc->peer.transport_addr_list) { t = list_entry(pos, struct sctp_transport, transports); sctp_retransmit_mark(&asoc->outqueue, t, 0); } sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); break; case SCTP_CMD_INIT_FAILED: sctp_cmd_init_failed(commands, asoc, cmd->obj.u32); break; case SCTP_CMD_ASSOC_FAILED: sctp_cmd_assoc_failed(commands, asoc, event_type, subtype, chunk, cmd->obj.u32); break; case SCTP_CMD_INIT_COUNTER_INC: asoc->init_err_counter++; break; case SCTP_CMD_INIT_COUNTER_RESET: asoc->init_err_counter = 0; asoc->init_cycle = 0; break; case SCTP_CMD_REPORT_DUP: sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, cmd->obj.u32); break; case SCTP_CMD_REPORT_BAD_TAG: SCTP_DEBUG_PRINTK("vtag mismatch!\n"); break; case SCTP_CMD_STRIKE: /* Mark one strike against a transport. */ sctp_do_8_2_transport_strike(asoc, cmd->obj.transport); break; case SCTP_CMD_TRANSPORT_RESET: t = cmd->obj.transport; sctp_cmd_transport_reset(commands, asoc, t); break; case SCTP_CMD_TRANSPORT_ON: t = cmd->obj.transport; sctp_cmd_transport_on(commands, asoc, t, chunk); break; case SCTP_CMD_HB_TIMERS_START: sctp_cmd_hb_timers_start(commands, asoc); break; case SCTP_CMD_HB_TIMER_UPDATE: t = cmd->obj.transport; sctp_cmd_hb_timer_update(commands, asoc, t); break; case SCTP_CMD_HB_TIMERS_STOP: sctp_cmd_hb_timers_stop(commands, asoc); break; case SCTP_CMD_REPORT_ERROR: error = cmd->obj.error; break; case SCTP_CMD_PROCESS_CTSN: /* Dummy up a SACK for processing. */ sackh.cum_tsn_ack = cmd->obj.u32; sackh.a_rwnd = 0; sackh.num_gap_ack_blocks = 0; sackh.num_dup_tsns = 0; sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, SCTP_SACKH(&sackh)); break; case SCTP_CMD_DISCARD_PACKET: /* We need to discard the whole packet. */ chunk->pdiscard = 1; break; case SCTP_CMD_RTO_PENDING: t = cmd->obj.transport; t->rto_pending = 1; break; case SCTP_CMD_PART_DELIVER: sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, GFP_ATOMIC); break; case SCTP_CMD_RENEGE: sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, GFP_ATOMIC); break; case SCTP_CMD_SETUP_T4: sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); break; case SCTP_CMD_PROCESS_OPERR: sctp_cmd_process_operr(commands, asoc, chunk); break; case SCTP_CMD_CLEAR_INIT_TAG: asoc->peer.i.init_tag = 0; break; case SCTP_CMD_DEL_NON_PRIMARY: sctp_cmd_del_non_primary(asoc); break; case SCTP_CMD_T3_RTX_TIMERS_STOP: sctp_cmd_t3_rtx_timers_stop(commands, asoc); break; case SCTP_CMD_FORCE_PRIM_RETRAN: t = asoc->peer.retran_path; asoc->peer.retran_path = asoc->peer.primary_path; error = sctp_outq_uncork(&asoc->outqueue); local_cork = 0; asoc->peer.retran_path = t; break; default: printk(KERN_WARNING "Impossible command: %u, %p\n", cmd->verb, cmd->obj.ptr); break; }; if (error) break; } out: if (local_cork) sctp_outq_uncork(&asoc->outqueue); return error; nomem: error = -ENOMEM; goto out; }