1538 lines
38 KiB
C
1538 lines
38 KiB
C
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* The Internet Protocol (IP) output module.
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Donald Becker, <becker@super.org>
|
|
* Alan Cox, <Alan.Cox@linux.org>
|
|
* Richard Underwood
|
|
* Stefan Becker, <stefanb@yello.ping.de>
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
|
* Hirokazu Takahashi, <taka@valinux.co.jp>
|
|
*
|
|
* See ip_input.c for original log
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : Missing nonblock feature in ip_build_xmit.
|
|
* Mike Kilburn : htons() missing in ip_build_xmit.
|
|
* Bradford Johnson: Fix faulty handling of some frames when
|
|
* no route is found.
|
|
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
|
|
* (in case if packet not accepted by
|
|
* output firewall rules)
|
|
* Mike McLagan : Routing by source
|
|
* Alexey Kuznetsov: use new route cache
|
|
* Andi Kleen: Fix broken PMTU recovery and remove
|
|
* some redundant tests.
|
|
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
|
|
* Andi Kleen : Replace ip_reply with ip_send_reply.
|
|
* Andi Kleen : Split fast and slow ip_build_xmit path
|
|
* for decreased register pressure on x86
|
|
* and more readibility.
|
|
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
|
|
* silently drop skb instead of failing with -EPERM.
|
|
* Detlev Wengorz : Copy protocol for fragments.
|
|
* Hirokazu Takahashi: HW checksumming for outgoing UDP
|
|
* datagrams.
|
|
* Hirokazu Takahashi: sendfile() on UDP works now.
|
|
*/
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/socket.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <net/snmp.h>
|
|
#include <net/ip.h>
|
|
#include <net/protocol.h>
|
|
#include <net/route.h>
|
|
#include <net/xfrm.h>
|
|
#include <linux/skbuff.h>
|
|
#include <net/sock.h>
|
|
#include <net/arp.h>
|
|
#include <net/icmp.h>
|
|
#include <net/checksum.h>
|
|
#include <net/inetpeer.h>
|
|
#include <linux/igmp.h>
|
|
#include <linux/netfilter_ipv4.h>
|
|
#include <linux/netfilter_bridge.h>
|
|
#include <linux/mroute.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/tcp.h>
|
|
|
|
int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
|
|
EXPORT_SYMBOL(sysctl_ip_default_ttl);
|
|
|
|
/* Generate a checksum for an outgoing IP datagram. */
|
|
__inline__ void ip_send_check(struct iphdr *iph)
|
|
{
|
|
iph->check = 0;
|
|
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
|
|
}
|
|
EXPORT_SYMBOL(ip_send_check);
|
|
|
|
int __ip_local_out(struct sk_buff *skb)
|
|
{
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
|
|
iph->tot_len = htons(skb->len);
|
|
ip_send_check(iph);
|
|
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
|
|
skb_dst(skb)->dev, dst_output);
|
|
}
|
|
|
|
int ip_local_out(struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
|
|
err = __ip_local_out(skb);
|
|
if (likely(err == 1))
|
|
err = dst_output(skb);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ip_local_out);
|
|
|
|
/* dev_loopback_xmit for use with netfilter. */
|
|
static int ip_dev_loopback_xmit(struct sk_buff *newskb)
|
|
{
|
|
skb_reset_mac_header(newskb);
|
|
__skb_pull(newskb, skb_network_offset(newskb));
|
|
newskb->pkt_type = PACKET_LOOPBACK;
|
|
newskb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
WARN_ON(!skb_dst(newskb));
|
|
skb_dst_force(newskb);
|
|
netif_rx_ni(newskb);
|
|
return 0;
|
|
}
|
|
|
|
static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
|
|
{
|
|
int ttl = inet->uc_ttl;
|
|
|
|
if (ttl < 0)
|
|
ttl = ip4_dst_hoplimit(dst);
|
|
return ttl;
|
|
}
|
|
|
|
/*
|
|
* Add an ip header to a skbuff and send it out.
|
|
*
|
|
*/
|
|
int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
|
|
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct rtable *rt = skb_rtable(skb);
|
|
struct iphdr *iph;
|
|
|
|
/* Build the IP header. */
|
|
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
|
|
skb_reset_network_header(skb);
|
|
iph = ip_hdr(skb);
|
|
iph->version = 4;
|
|
iph->ihl = 5;
|
|
iph->tos = inet->tos;
|
|
if (ip_dont_fragment(sk, &rt->dst))
|
|
iph->frag_off = htons(IP_DF);
|
|
else
|
|
iph->frag_off = 0;
|
|
iph->ttl = ip_select_ttl(inet, &rt->dst);
|
|
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
|
|
iph->saddr = saddr;
|
|
iph->protocol = sk->sk_protocol;
|
|
ip_select_ident(iph, &rt->dst, sk);
|
|
|
|
if (opt && opt->opt.optlen) {
|
|
iph->ihl += opt->opt.optlen>>2;
|
|
ip_options_build(skb, &opt->opt, daddr, rt, 0);
|
|
}
|
|
|
|
skb->priority = sk->sk_priority;
|
|
skb->mark = sk->sk_mark;
|
|
|
|
/* Send it out. */
|
|
return ip_local_out(skb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
|
|
|
|
static inline int ip_finish_output2(struct sk_buff *skb)
|
|
{
|
|
struct dst_entry *dst = skb_dst(skb);
|
|
struct rtable *rt = (struct rtable *)dst;
|
|
struct net_device *dev = dst->dev;
|
|
unsigned int hh_len = LL_RESERVED_SPACE(dev);
|
|
struct neighbour *neigh;
|
|
|
|
if (rt->rt_type == RTN_MULTICAST) {
|
|
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
|
|
} else if (rt->rt_type == RTN_BROADCAST)
|
|
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
|
|
|
|
/* Be paranoid, rather than too clever. */
|
|
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
|
|
struct sk_buff *skb2;
|
|
|
|
skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
|
|
if (skb2 == NULL) {
|
|
kfree_skb(skb);
|
|
return -ENOMEM;
|
|
}
|
|
if (skb->sk)
|
|
skb_set_owner_w(skb2, skb->sk);
|
|
kfree_skb(skb);
|
|
skb = skb2;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
neigh = dst_get_neighbour(dst);
|
|
if (neigh) {
|
|
int res = neigh_output(neigh, skb);
|
|
|
|
rcu_read_unlock();
|
|
return res;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (net_ratelimit())
|
|
printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
|
|
kfree_skb(skb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline int ip_skb_dst_mtu(struct sk_buff *skb)
|
|
{
|
|
struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
|
|
|
|
return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
|
|
skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
|
|
}
|
|
|
|
static int ip_finish_output(struct sk_buff *skb)
|
|
{
|
|
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
|
|
/* Policy lookup after SNAT yielded a new policy */
|
|
if (skb_dst(skb)->xfrm != NULL) {
|
|
IPCB(skb)->flags |= IPSKB_REROUTED;
|
|
return dst_output(skb);
|
|
}
|
|
#endif
|
|
if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
|
|
return ip_fragment(skb, ip_finish_output2);
|
|
else
|
|
return ip_finish_output2(skb);
|
|
}
|
|
|
|
int ip_mc_output(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct rtable *rt = skb_rtable(skb);
|
|
struct net_device *dev = rt->dst.dev;
|
|
|
|
/*
|
|
* If the indicated interface is up and running, send the packet.
|
|
*/
|
|
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
|
|
|
|
skb->dev = dev;
|
|
skb->protocol = htons(ETH_P_IP);
|
|
|
|
/*
|
|
* Multicasts are looped back for other local users
|
|
*/
|
|
|
|
if (rt->rt_flags&RTCF_MULTICAST) {
|
|
if (sk_mc_loop(sk)
|
|
#ifdef CONFIG_IP_MROUTE
|
|
/* Small optimization: do not loopback not local frames,
|
|
which returned after forwarding; they will be dropped
|
|
by ip_mr_input in any case.
|
|
Note, that local frames are looped back to be delivered
|
|
to local recipients.
|
|
|
|
This check is duplicated in ip_mr_input at the moment.
|
|
*/
|
|
&&
|
|
((rt->rt_flags & RTCF_LOCAL) ||
|
|
!(IPCB(skb)->flags & IPSKB_FORWARDED))
|
|
#endif
|
|
) {
|
|
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
|
|
if (newskb)
|
|
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
|
|
newskb, NULL, newskb->dev,
|
|
ip_dev_loopback_xmit);
|
|
}
|
|
|
|
/* Multicasts with ttl 0 must not go beyond the host */
|
|
|
|
if (ip_hdr(skb)->ttl == 0) {
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (rt->rt_flags&RTCF_BROADCAST) {
|
|
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
|
|
if (newskb)
|
|
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
|
|
NULL, newskb->dev, ip_dev_loopback_xmit);
|
|
}
|
|
|
|
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
|
|
skb->dev, ip_finish_output,
|
|
!(IPCB(skb)->flags & IPSKB_REROUTED));
|
|
}
|
|
|
|
int ip_output(struct sk_buff *skb)
|
|
{
|
|
struct net_device *dev = skb_dst(skb)->dev;
|
|
|
|
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
|
|
|
|
skb->dev = dev;
|
|
skb->protocol = htons(ETH_P_IP);
|
|
|
|
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
|
|
ip_finish_output,
|
|
!(IPCB(skb)->flags & IPSKB_REROUTED));
|
|
}
|
|
|
|
int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct ip_options_rcu *inet_opt;
|
|
struct flowi4 *fl4;
|
|
struct rtable *rt;
|
|
struct iphdr *iph;
|
|
int res;
|
|
|
|
/* Skip all of this if the packet is already routed,
|
|
* f.e. by something like SCTP.
|
|
*/
|
|
rcu_read_lock();
|
|
inet_opt = rcu_dereference(inet->inet_opt);
|
|
fl4 = &fl->u.ip4;
|
|
rt = skb_rtable(skb);
|
|
if (rt != NULL)
|
|
goto packet_routed;
|
|
|
|
/* Make sure we can route this packet. */
|
|
rt = (struct rtable *)__sk_dst_check(sk, 0);
|
|
if (rt == NULL) {
|
|
__be32 daddr;
|
|
|
|
/* Use correct destination address if we have options. */
|
|
daddr = inet->inet_daddr;
|
|
if (inet_opt && inet_opt->opt.srr)
|
|
daddr = inet_opt->opt.faddr;
|
|
|
|
/* If this fails, retransmit mechanism of transport layer will
|
|
* keep trying until route appears or the connection times
|
|
* itself out.
|
|
*/
|
|
rt = ip_route_output_ports(sock_net(sk), fl4, sk,
|
|
daddr, inet->inet_saddr,
|
|
inet->inet_dport,
|
|
inet->inet_sport,
|
|
sk->sk_protocol,
|
|
RT_CONN_FLAGS(sk),
|
|
sk->sk_bound_dev_if);
|
|
if (IS_ERR(rt))
|
|
goto no_route;
|
|
sk_setup_caps(sk, &rt->dst);
|
|
}
|
|
skb_dst_set_noref(skb, &rt->dst);
|
|
|
|
packet_routed:
|
|
if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
|
|
goto no_route;
|
|
|
|
/* OK, we know where to send it, allocate and build IP header. */
|
|
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
|
|
skb_reset_network_header(skb);
|
|
iph = ip_hdr(skb);
|
|
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
|
|
if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
|
|
iph->frag_off = htons(IP_DF);
|
|
else
|
|
iph->frag_off = 0;
|
|
iph->ttl = ip_select_ttl(inet, &rt->dst);
|
|
iph->protocol = sk->sk_protocol;
|
|
iph->saddr = fl4->saddr;
|
|
iph->daddr = fl4->daddr;
|
|
/* Transport layer set skb->h.foo itself. */
|
|
|
|
if (inet_opt && inet_opt->opt.optlen) {
|
|
iph->ihl += inet_opt->opt.optlen >> 2;
|
|
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
|
|
}
|
|
|
|
ip_select_ident_more(iph, &rt->dst, sk,
|
|
(skb_shinfo(skb)->gso_segs ?: 1) - 1);
|
|
|
|
skb->priority = sk->sk_priority;
|
|
skb->mark = sk->sk_mark;
|
|
|
|
res = ip_local_out(skb);
|
|
rcu_read_unlock();
|
|
return res;
|
|
|
|
no_route:
|
|
rcu_read_unlock();
|
|
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
|
|
kfree_skb(skb);
|
|
return -EHOSTUNREACH;
|
|
}
|
|
EXPORT_SYMBOL(ip_queue_xmit);
|
|
|
|
|
|
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
|
|
{
|
|
to->pkt_type = from->pkt_type;
|
|
to->priority = from->priority;
|
|
to->protocol = from->protocol;
|
|
skb_dst_drop(to);
|
|
skb_dst_copy(to, from);
|
|
to->dev = from->dev;
|
|
to->mark = from->mark;
|
|
|
|
/* Copy the flags to each fragment. */
|
|
IPCB(to)->flags = IPCB(from)->flags;
|
|
|
|
#ifdef CONFIG_NET_SCHED
|
|
to->tc_index = from->tc_index;
|
|
#endif
|
|
nf_copy(to, from);
|
|
#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
|
|
defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
|
|
to->nf_trace = from->nf_trace;
|
|
#endif
|
|
#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
|
|
to->ipvs_property = from->ipvs_property;
|
|
#endif
|
|
skb_copy_secmark(to, from);
|
|
}
|
|
|
|
/*
|
|
* This IP datagram is too large to be sent in one piece. Break it up into
|
|
* smaller pieces (each of size equal to IP header plus
|
|
* a block of the data of the original IP data part) that will yet fit in a
|
|
* single device frame, and queue such a frame for sending.
|
|
*/
|
|
|
|
int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
|
|
{
|
|
struct iphdr *iph;
|
|
int ptr;
|
|
struct net_device *dev;
|
|
struct sk_buff *skb2;
|
|
unsigned int mtu, hlen, left, len, ll_rs;
|
|
int offset;
|
|
__be16 not_last_frag;
|
|
struct rtable *rt = skb_rtable(skb);
|
|
int err = 0;
|
|
|
|
dev = rt->dst.dev;
|
|
|
|
/*
|
|
* Point into the IP datagram header.
|
|
*/
|
|
|
|
iph = ip_hdr(skb);
|
|
|
|
if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
|
|
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
|
|
htonl(ip_skb_dst_mtu(skb)));
|
|
kfree_skb(skb);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/*
|
|
* Setup starting values.
|
|
*/
|
|
|
|
hlen = iph->ihl * 4;
|
|
mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
|
|
#ifdef CONFIG_BRIDGE_NETFILTER
|
|
if (skb->nf_bridge)
|
|
mtu -= nf_bridge_mtu_reduction(skb);
|
|
#endif
|
|
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
|
|
|
|
/* When frag_list is given, use it. First, check its validity:
|
|
* some transformers could create wrong frag_list or break existing
|
|
* one, it is not prohibited. In this case fall back to copying.
|
|
*
|
|
* LATER: this step can be merged to real generation of fragments,
|
|
* we can switch to copy when see the first bad fragment.
|
|
*/
|
|
if (skb_has_frag_list(skb)) {
|
|
struct sk_buff *frag, *frag2;
|
|
int first_len = skb_pagelen(skb);
|
|
|
|
if (first_len - hlen > mtu ||
|
|
((first_len - hlen) & 7) ||
|
|
ip_is_fragment(iph) ||
|
|
skb_cloned(skb))
|
|
goto slow_path;
|
|
|
|
skb_walk_frags(skb, frag) {
|
|
/* Correct geometry. */
|
|
if (frag->len > mtu ||
|
|
((frag->len & 7) && frag->next) ||
|
|
skb_headroom(frag) < hlen)
|
|
goto slow_path_clean;
|
|
|
|
/* Partially cloned skb? */
|
|
if (skb_shared(frag))
|
|
goto slow_path_clean;
|
|
|
|
BUG_ON(frag->sk);
|
|
if (skb->sk) {
|
|
frag->sk = skb->sk;
|
|
frag->destructor = sock_wfree;
|
|
}
|
|
skb->truesize -= frag->truesize;
|
|
}
|
|
|
|
/* Everything is OK. Generate! */
|
|
|
|
err = 0;
|
|
offset = 0;
|
|
frag = skb_shinfo(skb)->frag_list;
|
|
skb_frag_list_init(skb);
|
|
skb->data_len = first_len - skb_headlen(skb);
|
|
skb->len = first_len;
|
|
iph->tot_len = htons(first_len);
|
|
iph->frag_off = htons(IP_MF);
|
|
ip_send_check(iph);
|
|
|
|
for (;;) {
|
|
/* Prepare header of the next frame,
|
|
* before previous one went down. */
|
|
if (frag) {
|
|
frag->ip_summed = CHECKSUM_NONE;
|
|
skb_reset_transport_header(frag);
|
|
__skb_push(frag, hlen);
|
|
skb_reset_network_header(frag);
|
|
memcpy(skb_network_header(frag), iph, hlen);
|
|
iph = ip_hdr(frag);
|
|
iph->tot_len = htons(frag->len);
|
|
ip_copy_metadata(frag, skb);
|
|
if (offset == 0)
|
|
ip_options_fragment(frag);
|
|
offset += skb->len - hlen;
|
|
iph->frag_off = htons(offset>>3);
|
|
if (frag->next != NULL)
|
|
iph->frag_off |= htons(IP_MF);
|
|
/* Ready, complete checksum */
|
|
ip_send_check(iph);
|
|
}
|
|
|
|
err = output(skb);
|
|
|
|
if (!err)
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
|
|
if (err || !frag)
|
|
break;
|
|
|
|
skb = frag;
|
|
frag = skb->next;
|
|
skb->next = NULL;
|
|
}
|
|
|
|
if (err == 0) {
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
|
|
return 0;
|
|
}
|
|
|
|
while (frag) {
|
|
skb = frag->next;
|
|
kfree_skb(frag);
|
|
frag = skb;
|
|
}
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
|
|
return err;
|
|
|
|
slow_path_clean:
|
|
skb_walk_frags(skb, frag2) {
|
|
if (frag2 == frag)
|
|
break;
|
|
frag2->sk = NULL;
|
|
frag2->destructor = NULL;
|
|
skb->truesize += frag2->truesize;
|
|
}
|
|
}
|
|
|
|
slow_path:
|
|
left = skb->len - hlen; /* Space per frame */
|
|
ptr = hlen; /* Where to start from */
|
|
|
|
/* for bridged IP traffic encapsulated inside f.e. a vlan header,
|
|
* we need to make room for the encapsulating header
|
|
*/
|
|
ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
|
|
|
|
/*
|
|
* Fragment the datagram.
|
|
*/
|
|
|
|
offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
|
|
not_last_frag = iph->frag_off & htons(IP_MF);
|
|
|
|
/*
|
|
* Keep copying data until we run out.
|
|
*/
|
|
|
|
while (left > 0) {
|
|
len = left;
|
|
/* IF: it doesn't fit, use 'mtu' - the data space left */
|
|
if (len > mtu)
|
|
len = mtu;
|
|
/* IF: we are not sending up to and including the packet end
|
|
then align the next start on an eight byte boundary */
|
|
if (len < left) {
|
|
len &= ~7;
|
|
}
|
|
/*
|
|
* Allocate buffer.
|
|
*/
|
|
|
|
if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
|
|
NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Set up data on packet
|
|
*/
|
|
|
|
ip_copy_metadata(skb2, skb);
|
|
skb_reserve(skb2, ll_rs);
|
|
skb_put(skb2, len + hlen);
|
|
skb_reset_network_header(skb2);
|
|
skb2->transport_header = skb2->network_header + hlen;
|
|
|
|
/*
|
|
* Charge the memory for the fragment to any owner
|
|
* it might possess
|
|
*/
|
|
|
|
if (skb->sk)
|
|
skb_set_owner_w(skb2, skb->sk);
|
|
|
|
/*
|
|
* Copy the packet header into the new buffer.
|
|
*/
|
|
|
|
skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
|
|
|
|
/*
|
|
* Copy a block of the IP datagram.
|
|
*/
|
|
if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
|
|
BUG();
|
|
left -= len;
|
|
|
|
/*
|
|
* Fill in the new header fields.
|
|
*/
|
|
iph = ip_hdr(skb2);
|
|
iph->frag_off = htons((offset >> 3));
|
|
|
|
/* ANK: dirty, but effective trick. Upgrade options only if
|
|
* the segment to be fragmented was THE FIRST (otherwise,
|
|
* options are already fixed) and make it ONCE
|
|
* on the initial skb, so that all the following fragments
|
|
* will inherit fixed options.
|
|
*/
|
|
if (offset == 0)
|
|
ip_options_fragment(skb);
|
|
|
|
/*
|
|
* Added AC : If we are fragmenting a fragment that's not the
|
|
* last fragment then keep MF on each bit
|
|
*/
|
|
if (left > 0 || not_last_frag)
|
|
iph->frag_off |= htons(IP_MF);
|
|
ptr += len;
|
|
offset += len;
|
|
|
|
/*
|
|
* Put this fragment into the sending queue.
|
|
*/
|
|
iph->tot_len = htons(len + hlen);
|
|
|
|
ip_send_check(iph);
|
|
|
|
err = output(skb2);
|
|
if (err)
|
|
goto fail;
|
|
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
|
|
}
|
|
kfree_skb(skb);
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
|
|
return err;
|
|
|
|
fail:
|
|
kfree_skb(skb);
|
|
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ip_fragment);
|
|
|
|
int
|
|
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
|
|
{
|
|
struct iovec *iov = from;
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
if (memcpy_fromiovecend(to, iov, offset, len) < 0)
|
|
return -EFAULT;
|
|
} else {
|
|
__wsum csum = 0;
|
|
if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
|
|
return -EFAULT;
|
|
skb->csum = csum_block_add(skb->csum, csum, odd);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ip_generic_getfrag);
|
|
|
|
static inline __wsum
|
|
csum_page(struct page *page, int offset, int copy)
|
|
{
|
|
char *kaddr;
|
|
__wsum csum;
|
|
kaddr = kmap(page);
|
|
csum = csum_partial(kaddr + offset, copy, 0);
|
|
kunmap(page);
|
|
return csum;
|
|
}
|
|
|
|
static inline int ip_ufo_append_data(struct sock *sk,
|
|
struct sk_buff_head *queue,
|
|
int getfrag(void *from, char *to, int offset, int len,
|
|
int odd, struct sk_buff *skb),
|
|
void *from, int length, int hh_len, int fragheaderlen,
|
|
int transhdrlen, int maxfraglen, unsigned int flags)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
/* There is support for UDP fragmentation offload by network
|
|
* device, so create one single skb packet containing complete
|
|
* udp datagram
|
|
*/
|
|
if ((skb = skb_peek_tail(queue)) == NULL) {
|
|
skb = sock_alloc_send_skb(sk,
|
|
hh_len + fragheaderlen + transhdrlen + 20,
|
|
(flags & MSG_DONTWAIT), &err);
|
|
|
|
if (skb == NULL)
|
|
return err;
|
|
|
|
/* reserve space for Hardware header */
|
|
skb_reserve(skb, hh_len);
|
|
|
|
/* create space for UDP/IP header */
|
|
skb_put(skb, fragheaderlen + transhdrlen);
|
|
|
|
/* initialize network header pointer */
|
|
skb_reset_network_header(skb);
|
|
|
|
/* initialize protocol header pointer */
|
|
skb->transport_header = skb->network_header + fragheaderlen;
|
|
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->csum = 0;
|
|
|
|
/* specify the length of each IP datagram fragment */
|
|
skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
|
|
__skb_queue_tail(queue, skb);
|
|
}
|
|
|
|
return skb_append_datato_frags(sk, skb, getfrag, from,
|
|
(length - transhdrlen));
|
|
}
|
|
|
|
static int __ip_append_data(struct sock *sk,
|
|
struct flowi4 *fl4,
|
|
struct sk_buff_head *queue,
|
|
struct inet_cork *cork,
|
|
int getfrag(void *from, char *to, int offset,
|
|
int len, int odd, struct sk_buff *skb),
|
|
void *from, int length, int transhdrlen,
|
|
unsigned int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct sk_buff *skb;
|
|
|
|
struct ip_options *opt = cork->opt;
|
|
int hh_len;
|
|
int exthdrlen;
|
|
int mtu;
|
|
int copy;
|
|
int err;
|
|
int offset = 0;
|
|
unsigned int maxfraglen, fragheaderlen;
|
|
int csummode = CHECKSUM_NONE;
|
|
struct rtable *rt = (struct rtable *)cork->dst;
|
|
|
|
skb = skb_peek_tail(queue);
|
|
|
|
exthdrlen = !skb ? rt->dst.header_len : 0;
|
|
mtu = cork->fragsize;
|
|
|
|
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
|
|
|
|
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
|
|
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
|
|
|
|
if (cork->length + length > 0xFFFF - fragheaderlen) {
|
|
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
|
|
mtu-exthdrlen);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/*
|
|
* transhdrlen > 0 means that this is the first fragment and we wish
|
|
* it won't be fragmented in the future.
|
|
*/
|
|
if (transhdrlen &&
|
|
length + fragheaderlen <= mtu &&
|
|
rt->dst.dev->features & NETIF_F_V4_CSUM &&
|
|
!exthdrlen)
|
|
csummode = CHECKSUM_PARTIAL;
|
|
|
|
cork->length += length;
|
|
if (((length > mtu) || (skb && skb_is_gso(skb))) &&
|
|
(sk->sk_protocol == IPPROTO_UDP) &&
|
|
(rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
|
|
err = ip_ufo_append_data(sk, queue, getfrag, from, length,
|
|
hh_len, fragheaderlen, transhdrlen,
|
|
maxfraglen, flags);
|
|
if (err)
|
|
goto error;
|
|
return 0;
|
|
}
|
|
|
|
/* So, what's going on in the loop below?
|
|
*
|
|
* We use calculated fragment length to generate chained skb,
|
|
* each of segments is IP fragment ready for sending to network after
|
|
* adding appropriate IP header.
|
|
*/
|
|
|
|
if (!skb)
|
|
goto alloc_new_skb;
|
|
|
|
while (length > 0) {
|
|
/* Check if the remaining data fits into current packet. */
|
|
copy = mtu - skb->len;
|
|
if (copy < length)
|
|
copy = maxfraglen - skb->len;
|
|
if (copy <= 0) {
|
|
char *data;
|
|
unsigned int datalen;
|
|
unsigned int fraglen;
|
|
unsigned int fraggap;
|
|
unsigned int alloclen;
|
|
struct sk_buff *skb_prev;
|
|
alloc_new_skb:
|
|
skb_prev = skb;
|
|
if (skb_prev)
|
|
fraggap = skb_prev->len - maxfraglen;
|
|
else
|
|
fraggap = 0;
|
|
|
|
/*
|
|
* If remaining data exceeds the mtu,
|
|
* we know we need more fragment(s).
|
|
*/
|
|
datalen = length + fraggap;
|
|
if (datalen > mtu - fragheaderlen)
|
|
datalen = maxfraglen - fragheaderlen;
|
|
fraglen = datalen + fragheaderlen;
|
|
|
|
if ((flags & MSG_MORE) &&
|
|
!(rt->dst.dev->features&NETIF_F_SG))
|
|
alloclen = mtu;
|
|
else
|
|
alloclen = fraglen;
|
|
|
|
alloclen += exthdrlen;
|
|
|
|
/* The last fragment gets additional space at tail.
|
|
* Note, with MSG_MORE we overallocate on fragments,
|
|
* because we have no idea what fragment will be
|
|
* the last.
|
|
*/
|
|
if (datalen == length + fraggap)
|
|
alloclen += rt->dst.trailer_len;
|
|
|
|
if (transhdrlen) {
|
|
skb = sock_alloc_send_skb(sk,
|
|
alloclen + hh_len + 15,
|
|
(flags & MSG_DONTWAIT), &err);
|
|
} else {
|
|
skb = NULL;
|
|
if (atomic_read(&sk->sk_wmem_alloc) <=
|
|
2 * sk->sk_sndbuf)
|
|
skb = sock_wmalloc(sk,
|
|
alloclen + hh_len + 15, 1,
|
|
sk->sk_allocation);
|
|
if (unlikely(skb == NULL))
|
|
err = -ENOBUFS;
|
|
else
|
|
/* only the initial fragment is
|
|
time stamped */
|
|
cork->tx_flags = 0;
|
|
}
|
|
if (skb == NULL)
|
|
goto error;
|
|
|
|
/*
|
|
* Fill in the control structures
|
|
*/
|
|
skb->ip_summed = csummode;
|
|
skb->csum = 0;
|
|
skb_reserve(skb, hh_len);
|
|
skb_shinfo(skb)->tx_flags = cork->tx_flags;
|
|
|
|
/*
|
|
* Find where to start putting bytes.
|
|
*/
|
|
data = skb_put(skb, fraglen + exthdrlen);
|
|
skb_set_network_header(skb, exthdrlen);
|
|
skb->transport_header = (skb->network_header +
|
|
fragheaderlen);
|
|
data += fragheaderlen + exthdrlen;
|
|
|
|
if (fraggap) {
|
|
skb->csum = skb_copy_and_csum_bits(
|
|
skb_prev, maxfraglen,
|
|
data + transhdrlen, fraggap, 0);
|
|
skb_prev->csum = csum_sub(skb_prev->csum,
|
|
skb->csum);
|
|
data += fraggap;
|
|
pskb_trim_unique(skb_prev, maxfraglen);
|
|
}
|
|
|
|
copy = datalen - transhdrlen - fraggap;
|
|
if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
|
|
err = -EFAULT;
|
|
kfree_skb(skb);
|
|
goto error;
|
|
}
|
|
|
|
offset += copy;
|
|
length -= datalen - fraggap;
|
|
transhdrlen = 0;
|
|
exthdrlen = 0;
|
|
csummode = CHECKSUM_NONE;
|
|
|
|
/*
|
|
* Put the packet on the pending queue.
|
|
*/
|
|
__skb_queue_tail(queue, skb);
|
|
continue;
|
|
}
|
|
|
|
if (copy > length)
|
|
copy = length;
|
|
|
|
if (!(rt->dst.dev->features&NETIF_F_SG)) {
|
|
unsigned int off;
|
|
|
|
off = skb->len;
|
|
if (getfrag(from, skb_put(skb, copy),
|
|
offset, copy, off, skb) < 0) {
|
|
__skb_trim(skb, off);
|
|
err = -EFAULT;
|
|
goto error;
|
|
}
|
|
} else {
|
|
int i = skb_shinfo(skb)->nr_frags;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
|
|
struct page *page = cork->page;
|
|
int off = cork->off;
|
|
unsigned int left;
|
|
|
|
if (page && (left = PAGE_SIZE - off) > 0) {
|
|
if (copy >= left)
|
|
copy = left;
|
|
if (page != skb_frag_page(frag)) {
|
|
if (i == MAX_SKB_FRAGS) {
|
|
err = -EMSGSIZE;
|
|
goto error;
|
|
}
|
|
skb_fill_page_desc(skb, i, page, off, 0);
|
|
skb_frag_ref(skb, i);
|
|
frag = &skb_shinfo(skb)->frags[i];
|
|
}
|
|
} else if (i < MAX_SKB_FRAGS) {
|
|
if (copy > PAGE_SIZE)
|
|
copy = PAGE_SIZE;
|
|
page = alloc_pages(sk->sk_allocation, 0);
|
|
if (page == NULL) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
cork->page = page;
|
|
cork->off = 0;
|
|
|
|
skb_fill_page_desc(skb, i, page, 0, 0);
|
|
frag = &skb_shinfo(skb)->frags[i];
|
|
} else {
|
|
err = -EMSGSIZE;
|
|
goto error;
|
|
}
|
|
if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
|
|
offset, copy, skb->len, skb) < 0) {
|
|
err = -EFAULT;
|
|
goto error;
|
|
}
|
|
cork->off += copy;
|
|
skb_frag_size_add(frag, copy);
|
|
skb->len += copy;
|
|
skb->data_len += copy;
|
|
skb->truesize += copy;
|
|
atomic_add(copy, &sk->sk_wmem_alloc);
|
|
}
|
|
offset += copy;
|
|
length -= copy;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
cork->length -= length;
|
|
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
|
|
return err;
|
|
}
|
|
|
|
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
|
|
struct ipcm_cookie *ipc, struct rtable **rtp)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct ip_options_rcu *opt;
|
|
struct rtable *rt;
|
|
|
|
/*
|
|
* setup for corking.
|
|
*/
|
|
opt = ipc->opt;
|
|
if (opt) {
|
|
if (cork->opt == NULL) {
|
|
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
|
|
sk->sk_allocation);
|
|
if (unlikely(cork->opt == NULL))
|
|
return -ENOBUFS;
|
|
}
|
|
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
|
|
cork->flags |= IPCORK_OPT;
|
|
cork->addr = ipc->addr;
|
|
}
|
|
rt = *rtp;
|
|
if (unlikely(!rt))
|
|
return -EFAULT;
|
|
/*
|
|
* We steal reference to this route, caller should not release it
|
|
*/
|
|
*rtp = NULL;
|
|
cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
|
|
rt->dst.dev->mtu : dst_mtu(&rt->dst);
|
|
cork->dst = &rt->dst;
|
|
cork->length = 0;
|
|
cork->tx_flags = ipc->tx_flags;
|
|
cork->page = NULL;
|
|
cork->off = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ip_append_data() and ip_append_page() can make one large IP datagram
|
|
* from many pieces of data. Each pieces will be holded on the socket
|
|
* until ip_push_pending_frames() is called. Each piece can be a page
|
|
* or non-page data.
|
|
*
|
|
* Not only UDP, other transport protocols - e.g. raw sockets - can use
|
|
* this interface potentially.
|
|
*
|
|
* LATER: length must be adjusted by pad at tail, when it is required.
|
|
*/
|
|
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
|
|
int getfrag(void *from, char *to, int offset, int len,
|
|
int odd, struct sk_buff *skb),
|
|
void *from, int length, int transhdrlen,
|
|
struct ipcm_cookie *ipc, struct rtable **rtp,
|
|
unsigned int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
int err;
|
|
|
|
if (flags&MSG_PROBE)
|
|
return 0;
|
|
|
|
if (skb_queue_empty(&sk->sk_write_queue)) {
|
|
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
transhdrlen = 0;
|
|
}
|
|
|
|
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
|
|
from, length, transhdrlen, flags);
|
|
}
|
|
|
|
ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct sk_buff *skb;
|
|
struct rtable *rt;
|
|
struct ip_options *opt = NULL;
|
|
struct inet_cork *cork;
|
|
int hh_len;
|
|
int mtu;
|
|
int len;
|
|
int err;
|
|
unsigned int maxfraglen, fragheaderlen, fraggap;
|
|
|
|
if (inet->hdrincl)
|
|
return -EPERM;
|
|
|
|
if (flags&MSG_PROBE)
|
|
return 0;
|
|
|
|
if (skb_queue_empty(&sk->sk_write_queue))
|
|
return -EINVAL;
|
|
|
|
cork = &inet->cork.base;
|
|
rt = (struct rtable *)cork->dst;
|
|
if (cork->flags & IPCORK_OPT)
|
|
opt = cork->opt;
|
|
|
|
if (!(rt->dst.dev->features&NETIF_F_SG))
|
|
return -EOPNOTSUPP;
|
|
|
|
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
|
|
mtu = cork->fragsize;
|
|
|
|
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
|
|
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
|
|
|
|
if (cork->length + size > 0xFFFF - fragheaderlen) {
|
|
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
|
|
return -EINVAL;
|
|
|
|
cork->length += size;
|
|
if ((size + skb->len > mtu) &&
|
|
(sk->sk_protocol == IPPROTO_UDP) &&
|
|
(rt->dst.dev->features & NETIF_F_UFO)) {
|
|
skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
|
|
}
|
|
|
|
|
|
while (size > 0) {
|
|
int i;
|
|
|
|
if (skb_is_gso(skb))
|
|
len = size;
|
|
else {
|
|
|
|
/* Check if the remaining data fits into current packet. */
|
|
len = mtu - skb->len;
|
|
if (len < size)
|
|
len = maxfraglen - skb->len;
|
|
}
|
|
if (len <= 0) {
|
|
struct sk_buff *skb_prev;
|
|
int alloclen;
|
|
|
|
skb_prev = skb;
|
|
fraggap = skb_prev->len - maxfraglen;
|
|
|
|
alloclen = fragheaderlen + hh_len + fraggap + 15;
|
|
skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
|
|
if (unlikely(!skb)) {
|
|
err = -ENOBUFS;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Fill in the control structures
|
|
*/
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
skb->csum = 0;
|
|
skb_reserve(skb, hh_len);
|
|
|
|
/*
|
|
* Find where to start putting bytes.
|
|
*/
|
|
skb_put(skb, fragheaderlen + fraggap);
|
|
skb_reset_network_header(skb);
|
|
skb->transport_header = (skb->network_header +
|
|
fragheaderlen);
|
|
if (fraggap) {
|
|
skb->csum = skb_copy_and_csum_bits(skb_prev,
|
|
maxfraglen,
|
|
skb_transport_header(skb),
|
|
fraggap, 0);
|
|
skb_prev->csum = csum_sub(skb_prev->csum,
|
|
skb->csum);
|
|
pskb_trim_unique(skb_prev, maxfraglen);
|
|
}
|
|
|
|
/*
|
|
* Put the packet on the pending queue.
|
|
*/
|
|
__skb_queue_tail(&sk->sk_write_queue, skb);
|
|
continue;
|
|
}
|
|
|
|
i = skb_shinfo(skb)->nr_frags;
|
|
if (len > size)
|
|
len = size;
|
|
if (skb_can_coalesce(skb, i, page, offset)) {
|
|
skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
|
|
} else if (i < MAX_SKB_FRAGS) {
|
|
get_page(page);
|
|
skb_fill_page_desc(skb, i, page, offset, len);
|
|
} else {
|
|
err = -EMSGSIZE;
|
|
goto error;
|
|
}
|
|
|
|
if (skb->ip_summed == CHECKSUM_NONE) {
|
|
__wsum csum;
|
|
csum = csum_page(page, offset, len);
|
|
skb->csum = csum_block_add(skb->csum, csum, skb->len);
|
|
}
|
|
|
|
skb->len += len;
|
|
skb->data_len += len;
|
|
skb->truesize += len;
|
|
atomic_add(len, &sk->sk_wmem_alloc);
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
cork->length -= size;
|
|
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
|
|
return err;
|
|
}
|
|
|
|
static void ip_cork_release(struct inet_cork *cork)
|
|
{
|
|
cork->flags &= ~IPCORK_OPT;
|
|
kfree(cork->opt);
|
|
cork->opt = NULL;
|
|
dst_release(cork->dst);
|
|
cork->dst = NULL;
|
|
}
|
|
|
|
/*
|
|
* Combined all pending IP fragments on the socket as one IP datagram
|
|
* and push them out.
|
|
*/
|
|
struct sk_buff *__ip_make_skb(struct sock *sk,
|
|
struct flowi4 *fl4,
|
|
struct sk_buff_head *queue,
|
|
struct inet_cork *cork)
|
|
{
|
|
struct sk_buff *skb, *tmp_skb;
|
|
struct sk_buff **tail_skb;
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct net *net = sock_net(sk);
|
|
struct ip_options *opt = NULL;
|
|
struct rtable *rt = (struct rtable *)cork->dst;
|
|
struct iphdr *iph;
|
|
__be16 df = 0;
|
|
__u8 ttl;
|
|
|
|
if ((skb = __skb_dequeue(queue)) == NULL)
|
|
goto out;
|
|
tail_skb = &(skb_shinfo(skb)->frag_list);
|
|
|
|
/* move skb->data to ip header from ext header */
|
|
if (skb->data < skb_network_header(skb))
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
|
|
__skb_pull(tmp_skb, skb_network_header_len(skb));
|
|
*tail_skb = tmp_skb;
|
|
tail_skb = &(tmp_skb->next);
|
|
skb->len += tmp_skb->len;
|
|
skb->data_len += tmp_skb->len;
|
|
skb->truesize += tmp_skb->truesize;
|
|
tmp_skb->destructor = NULL;
|
|
tmp_skb->sk = NULL;
|
|
}
|
|
|
|
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
|
|
* to fragment the frame generated here. No matter, what transforms
|
|
* how transforms change size of the packet, it will come out.
|
|
*/
|
|
if (inet->pmtudisc < IP_PMTUDISC_DO)
|
|
skb->local_df = 1;
|
|
|
|
/* DF bit is set when we want to see DF on outgoing frames.
|
|
* If local_df is set too, we still allow to fragment this frame
|
|
* locally. */
|
|
if (inet->pmtudisc >= IP_PMTUDISC_DO ||
|
|
(skb->len <= dst_mtu(&rt->dst) &&
|
|
ip_dont_fragment(sk, &rt->dst)))
|
|
df = htons(IP_DF);
|
|
|
|
if (cork->flags & IPCORK_OPT)
|
|
opt = cork->opt;
|
|
|
|
if (rt->rt_type == RTN_MULTICAST)
|
|
ttl = inet->mc_ttl;
|
|
else
|
|
ttl = ip_select_ttl(inet, &rt->dst);
|
|
|
|
iph = (struct iphdr *)skb->data;
|
|
iph->version = 4;
|
|
iph->ihl = 5;
|
|
iph->tos = inet->tos;
|
|
iph->frag_off = df;
|
|
ip_select_ident(iph, &rt->dst, sk);
|
|
iph->ttl = ttl;
|
|
iph->protocol = sk->sk_protocol;
|
|
iph->saddr = fl4->saddr;
|
|
iph->daddr = fl4->daddr;
|
|
|
|
if (opt) {
|
|
iph->ihl += opt->optlen>>2;
|
|
ip_options_build(skb, opt, cork->addr, rt, 0);
|
|
}
|
|
|
|
skb->priority = sk->sk_priority;
|
|
skb->mark = sk->sk_mark;
|
|
/*
|
|
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
|
|
* on dst refcount
|
|
*/
|
|
cork->dst = NULL;
|
|
skb_dst_set(skb, &rt->dst);
|
|
|
|
if (iph->protocol == IPPROTO_ICMP)
|
|
icmp_out_count(net, ((struct icmphdr *)
|
|
skb_transport_header(skb))->type);
|
|
|
|
ip_cork_release(cork);
|
|
out:
|
|
return skb;
|
|
}
|
|
|
|
int ip_send_skb(struct sk_buff *skb)
|
|
{
|
|
struct net *net = sock_net(skb->sk);
|
|
int err;
|
|
|
|
err = ip_local_out(skb);
|
|
if (err) {
|
|
if (err > 0)
|
|
err = net_xmit_errno(err);
|
|
if (err)
|
|
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = ip_finish_skb(sk, fl4);
|
|
if (!skb)
|
|
return 0;
|
|
|
|
/* Netfilter gets whole the not fragmented skb. */
|
|
return ip_send_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Throw away all pending data on the socket.
|
|
*/
|
|
static void __ip_flush_pending_frames(struct sock *sk,
|
|
struct sk_buff_head *queue,
|
|
struct inet_cork *cork)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = __skb_dequeue_tail(queue)) != NULL)
|
|
kfree_skb(skb);
|
|
|
|
ip_cork_release(cork);
|
|
}
|
|
|
|
void ip_flush_pending_frames(struct sock *sk)
|
|
{
|
|
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
|
|
}
|
|
|
|
struct sk_buff *ip_make_skb(struct sock *sk,
|
|
struct flowi4 *fl4,
|
|
int getfrag(void *from, char *to, int offset,
|
|
int len, int odd, struct sk_buff *skb),
|
|
void *from, int length, int transhdrlen,
|
|
struct ipcm_cookie *ipc, struct rtable **rtp,
|
|
unsigned int flags)
|
|
{
|
|
struct inet_cork cork;
|
|
struct sk_buff_head queue;
|
|
int err;
|
|
|
|
if (flags & MSG_PROBE)
|
|
return NULL;
|
|
|
|
__skb_queue_head_init(&queue);
|
|
|
|
cork.flags = 0;
|
|
cork.addr = 0;
|
|
cork.opt = NULL;
|
|
err = ip_setup_cork(sk, &cork, ipc, rtp);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
|
|
from, length, transhdrlen, flags);
|
|
if (err) {
|
|
__ip_flush_pending_frames(sk, &queue, &cork);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return __ip_make_skb(sk, fl4, &queue, &cork);
|
|
}
|
|
|
|
/*
|
|
* Fetch data from kernel space and fill in checksum if needed.
|
|
*/
|
|
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
|
|
int len, int odd, struct sk_buff *skb)
|
|
{
|
|
__wsum csum;
|
|
|
|
csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
|
|
skb->csum = csum_block_add(skb->csum, csum, odd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generic function to send a packet as reply to another packet.
|
|
* Used to send TCP resets so far. ICMP should use this function too.
|
|
*
|
|
* Should run single threaded per socket because it uses the sock
|
|
* structure to pass arguments.
|
|
*/
|
|
void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
|
|
const struct ip_reply_arg *arg, unsigned int len)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct ip_options_data replyopts;
|
|
struct ipcm_cookie ipc;
|
|
struct flowi4 fl4;
|
|
struct rtable *rt = skb_rtable(skb);
|
|
|
|
if (ip_options_echo(&replyopts.opt.opt, skb))
|
|
return;
|
|
|
|
ipc.addr = daddr;
|
|
ipc.opt = NULL;
|
|
ipc.tx_flags = 0;
|
|
|
|
if (replyopts.opt.opt.optlen) {
|
|
ipc.opt = &replyopts.opt;
|
|
|
|
if (replyopts.opt.opt.srr)
|
|
daddr = replyopts.opt.opt.faddr;
|
|
}
|
|
|
|
flowi4_init_output(&fl4, arg->bound_dev_if, 0,
|
|
RT_TOS(arg->tos),
|
|
RT_SCOPE_UNIVERSE, sk->sk_protocol,
|
|
ip_reply_arg_flowi_flags(arg),
|
|
daddr, rt->rt_spec_dst,
|
|
tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
|
|
security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
|
|
rt = ip_route_output_key(sock_net(sk), &fl4);
|
|
if (IS_ERR(rt))
|
|
return;
|
|
|
|
/* And let IP do all the hard work.
|
|
|
|
This chunk is not reenterable, hence spinlock.
|
|
Note that it uses the fact, that this function is called
|
|
with locally disabled BH and that sk cannot be already spinlocked.
|
|
*/
|
|
bh_lock_sock(sk);
|
|
inet->tos = arg->tos;
|
|
sk->sk_priority = skb->priority;
|
|
sk->sk_protocol = ip_hdr(skb)->protocol;
|
|
sk->sk_bound_dev_if = arg->bound_dev_if;
|
|
ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
|
|
&ipc, &rt, MSG_DONTWAIT);
|
|
if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
|
|
if (arg->csumoffset >= 0)
|
|
*((__sum16 *)skb_transport_header(skb) +
|
|
arg->csumoffset) = csum_fold(csum_add(skb->csum,
|
|
arg->csum));
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
ip_push_pending_frames(sk, &fl4);
|
|
}
|
|
|
|
bh_unlock_sock(sk);
|
|
|
|
ip_rt_put(rt);
|
|
}
|
|
|
|
void __init ip_init(void)
|
|
{
|
|
ip_rt_init();
|
|
inet_initpeers();
|
|
|
|
#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
|
|
igmp_mc_proc_init();
|
|
#endif
|
|
}
|