linux-stable-rt/drivers/media/dvb/dvb-usb/af9005-fe.c

1489 lines
36 KiB
C

/* Frontend part of the Linux driver for the Afatech 9005
* USB1.1 DVB-T receiver.
*
* Copyright (C) 2007 Luca Olivetti (luca@ventoso.org)
*
* Thanks to Afatech who kindly provided information.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* see Documentation/dvb/README.dvb-usb for more information
*/
#include "af9005.h"
#include "af9005-script.h"
#include "mt2060.h"
#include "qt1010.h"
#include <asm/div64.h>
struct af9005_fe_state {
struct dvb_usb_device *d;
fe_status_t stat;
/* retraining parameters */
u32 original_fcw;
u16 original_rf_top;
u16 original_if_top;
u16 original_if_min;
u16 original_aci0_if_top;
u16 original_aci1_if_top;
u16 original_aci0_if_min;
u8 original_if_unplug_th;
u8 original_rf_unplug_th;
u8 original_dtop_if_unplug_th;
u8 original_dtop_rf_unplug_th;
/* statistics */
u32 pre_vit_error_count;
u32 pre_vit_bit_count;
u32 ber;
u32 post_vit_error_count;
u32 post_vit_bit_count;
u32 unc;
u16 abort_count;
int opened;
int strong;
unsigned long next_status_check;
struct dvb_frontend frontend;
};
static int af9005_write_word_agc(struct dvb_usb_device *d, u16 reghi,
u16 reglo, u8 pos, u8 len, u16 value)
{
int ret;
u8 temp;
if ((ret = af9005_write_ofdm_register(d, reglo, (u8) (value & 0xff))))
return ret;
temp = (u8) ((value & 0x0300) >> 8);
return af9005_write_register_bits(d, reghi, pos, len,
(u8) ((value & 0x300) >> 8));
}
static int af9005_read_word_agc(struct dvb_usb_device *d, u16 reghi,
u16 reglo, u8 pos, u8 len, u16 * value)
{
int ret;
u8 temp0, temp1;
if ((ret = af9005_read_ofdm_register(d, reglo, &temp0)))
return ret;
if ((ret = af9005_read_ofdm_register(d, reghi, &temp1)))
return ret;
switch (pos) {
case 0:
*value = ((u16) (temp1 & 0x03) << 8) + (u16) temp0;
break;
case 2:
*value = ((u16) (temp1 & 0x0C) << 6) + (u16) temp0;
break;
case 4:
*value = ((u16) (temp1 & 0x30) << 4) + (u16) temp0;
break;
case 6:
*value = ((u16) (temp1 & 0xC0) << 2) + (u16) temp0;
break;
default:
err("invalid pos in read word agc");
return -EINVAL;
}
return 0;
}
static int af9005_is_fecmon_available(struct dvb_frontend *fe, int *available)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
u8 temp;
*available = false;
ret = af9005_read_register_bits(state->d, xd_p_fec_vtb_rsd_mon_en,
fec_vtb_rsd_mon_en_pos,
fec_vtb_rsd_mon_en_len, &temp);
if (ret)
return ret;
if (temp & 1) {
ret =
af9005_read_register_bits(state->d,
xd_p_reg_ofsm_read_rbc_en,
reg_ofsm_read_rbc_en_pos,
reg_ofsm_read_rbc_en_len, &temp);
if (ret)
return ret;
if ((temp & 1) == 0)
*available = true;
}
return 0;
}
static int af9005_get_post_vit_err_cw_count(struct dvb_frontend *fe,
u32 * post_err_count,
u32 * post_cw_count,
u16 * abort_count)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
u32 err_count;
u32 cw_count;
u8 temp, temp0, temp1, temp2;
u16 loc_abort_count;
*post_err_count = 0;
*post_cw_count = 0;
/* check if error bit count is ready */
ret =
af9005_read_register_bits(state->d, xd_r_fec_rsd_ber_rdy,
fec_rsd_ber_rdy_pos, fec_rsd_ber_rdy_len,
&temp);
if (ret)
return ret;
if (!temp) {
deb_info("rsd counter not ready\n");
return 100;
}
/* get abort count */
ret =
af9005_read_ofdm_register(state->d,
xd_r_fec_rsd_abort_packet_cnt_7_0,
&temp0);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d,
xd_r_fec_rsd_abort_packet_cnt_15_8,
&temp1);
if (ret)
return ret;
loc_abort_count = ((u16) temp1 << 8) + temp0;
/* get error count */
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_rsd_bit_err_cnt_7_0,
&temp0);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_rsd_bit_err_cnt_15_8,
&temp1);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_rsd_bit_err_cnt_23_16,
&temp2);
if (ret)
return ret;
err_count = ((u32) temp2 << 16) + ((u32) temp1 << 8) + temp0;
*post_err_count = err_count - (u32) loc_abort_count *8 * 8;
/* get RSD packet number */
ret =
af9005_read_ofdm_register(state->d, xd_p_fec_rsd_packet_unit_7_0,
&temp0);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_p_fec_rsd_packet_unit_15_8,
&temp1);
if (ret)
return ret;
cw_count = ((u32) temp1 << 8) + temp0;
if (cw_count == 0) {
err("wrong RSD packet count");
return -EIO;
}
deb_info("POST abort count %d err count %d rsd packets %d\n",
loc_abort_count, err_count, cw_count);
*post_cw_count = cw_count - (u32) loc_abort_count;
*abort_count = loc_abort_count;
return 0;
}
static int af9005_get_post_vit_ber(struct dvb_frontend *fe,
u32 * post_err_count, u32 * post_cw_count,
u16 * abort_count)
{
u32 loc_cw_count = 0, loc_err_count;
u16 loc_abort_count = 0;
int ret;
ret =
af9005_get_post_vit_err_cw_count(fe, &loc_err_count, &loc_cw_count,
&loc_abort_count);
if (ret)
return ret;
*post_err_count = loc_err_count;
*post_cw_count = loc_cw_count * 204 * 8;
*abort_count = loc_abort_count;
return 0;
}
static int af9005_get_pre_vit_err_bit_count(struct dvb_frontend *fe,
u32 * pre_err_count,
u32 * pre_bit_count)
{
struct af9005_fe_state *state = fe->demodulator_priv;
u8 temp, temp0, temp1, temp2;
u32 super_frame_count, x, bits;
int ret;
ret =
af9005_read_register_bits(state->d, xd_r_fec_vtb_ber_rdy,
fec_vtb_ber_rdy_pos, fec_vtb_ber_rdy_len,
&temp);
if (ret)
return ret;
if (!temp) {
deb_info("viterbi counter not ready\n");
return 101; /* ERR_APO_VTB_COUNTER_NOT_READY; */
}
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_vtb_err_bit_cnt_7_0,
&temp0);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_vtb_err_bit_cnt_15_8,
&temp1);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_r_fec_vtb_err_bit_cnt_23_16,
&temp2);
if (ret)
return ret;
*pre_err_count = ((u32) temp2 << 16) + ((u32) temp1 << 8) + temp0;
ret =
af9005_read_ofdm_register(state->d, xd_p_fec_super_frm_unit_7_0,
&temp0);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_p_fec_super_frm_unit_15_8,
&temp1);
if (ret)
return ret;
super_frame_count = ((u32) temp1 << 8) + temp0;
if (super_frame_count == 0) {
deb_info("super frame count 0\n");
return 102;
}
/* read fft mode */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_txmod,
reg_tpsd_txmod_pos, reg_tpsd_txmod_len,
&temp);
if (ret)
return ret;
if (temp == 0) {
/* 2K */
x = 1512;
} else if (temp == 1) {
/* 8k */
x = 6048;
} else {
err("Invalid fft mode");
return -EINVAL;
}
/* read constellation mode */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_const,
reg_tpsd_const_pos, reg_tpsd_const_len,
&temp);
if (ret)
return ret;
switch (temp) {
case 0: /* QPSK */
bits = 2;
break;
case 1: /* QAM_16 */
bits = 4;
break;
case 2: /* QAM_64 */
bits = 6;
break;
default:
err("invalid constellation mode");
return -EINVAL;
}
*pre_bit_count = super_frame_count * 68 * 4 * x * bits;
deb_info("PRE err count %d frame count %d bit count %d\n",
*pre_err_count, super_frame_count, *pre_bit_count);
return 0;
}
static int af9005_reset_pre_viterbi(struct dvb_frontend *fe)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
/* set super frame count to 1 */
ret =
af9005_write_ofdm_register(state->d, xd_p_fec_super_frm_unit_7_0,
1 & 0xff);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, xd_p_fec_super_frm_unit_15_8,
1 >> 8);
if (ret)
return ret;
/* reset pre viterbi error count */
ret =
af9005_write_register_bits(state->d, xd_p_fec_vtb_ber_rst,
fec_vtb_ber_rst_pos, fec_vtb_ber_rst_len,
1);
return ret;
}
static int af9005_reset_post_viterbi(struct dvb_frontend *fe)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
/* set packet unit */
ret =
af9005_write_ofdm_register(state->d, xd_p_fec_rsd_packet_unit_7_0,
10000 & 0xff);
if (ret)
return ret;
ret =
af9005_write_ofdm_register(state->d, xd_p_fec_rsd_packet_unit_15_8,
10000 >> 8);
if (ret)
return ret;
/* reset post viterbi error count */
ret =
af9005_write_register_bits(state->d, xd_p_fec_rsd_ber_rst,
fec_rsd_ber_rst_pos, fec_rsd_ber_rst_len,
1);
return ret;
}
static int af9005_get_statistic(struct dvb_frontend *fe)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret, fecavailable;
u64 numerator, denominator;
deb_info("GET STATISTIC\n");
ret = af9005_is_fecmon_available(fe, &fecavailable);
if (ret)
return ret;
if (!fecavailable) {
deb_info("fecmon not available\n");
return 0;
}
ret = af9005_get_pre_vit_err_bit_count(fe, &state->pre_vit_error_count,
&state->pre_vit_bit_count);
if (ret == 0) {
af9005_reset_pre_viterbi(fe);
if (state->pre_vit_bit_count > 0) {
/* according to v 0.0.4 of the dvb api ber should be a multiple
of 10E-9 so we have to multiply the error count by
10E9=1000000000 */
numerator =
(u64) state->pre_vit_error_count * (u64) 1000000000;
denominator = (u64) state->pre_vit_bit_count;
state->ber = do_div(numerator, denominator);
} else {
state->ber = 0xffffffff;
}
}
ret = af9005_get_post_vit_ber(fe, &state->post_vit_error_count,
&state->post_vit_bit_count,
&state->abort_count);
if (ret == 0) {
ret = af9005_reset_post_viterbi(fe);
state->unc += state->abort_count;
if (ret)
return ret;
}
return 0;
}
static int af9005_fe_refresh_state(struct dvb_frontend *fe)
{
struct af9005_fe_state *state = fe->demodulator_priv;
if (time_after(jiffies, state->next_status_check)) {
deb_info("REFRESH STATE\n");
/* statistics */
if (af9005_get_statistic(fe))
err("get_statistic_failed");
state->next_status_check = jiffies + 250 * HZ / 1000;
}
return 0;
}
static int af9005_fe_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{
struct af9005_fe_state *state = fe->demodulator_priv;
u8 temp;
int ret;
if (fe->ops.tuner_ops.release == NULL)
return -ENODEV;
*stat = 0;
ret = af9005_read_register_bits(state->d, xd_p_agc_lock,
agc_lock_pos, agc_lock_len, &temp);
if (ret)
return ret;
if (temp)
*stat |= FE_HAS_SIGNAL;
ret = af9005_read_register_bits(state->d, xd_p_fd_tpsd_lock,
fd_tpsd_lock_pos, fd_tpsd_lock_len,
&temp);
if (ret)
return ret;
if (temp)
*stat |= FE_HAS_CARRIER;
ret = af9005_read_register_bits(state->d,
xd_r_mp2if_sync_byte_locked,
mp2if_sync_byte_locked_pos,
mp2if_sync_byte_locked_pos, &temp);
if (ret)
return ret;
if (temp)
*stat |= FE_HAS_SYNC | FE_HAS_VITERBI | FE_HAS_LOCK;
if (state->opened)
af9005_led_control(state->d, *stat & FE_HAS_LOCK);
ret =
af9005_read_register_bits(state->d, xd_p_reg_strong_sginal_detected,
reg_strong_sginal_detected_pos,
reg_strong_sginal_detected_len, &temp);
if (ret)
return ret;
if (temp != state->strong) {
deb_info("adjust for strong signal %d\n", temp);
state->strong = temp;
}
return 0;
}
static int af9005_fe_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct af9005_fe_state *state = fe->demodulator_priv;
if (fe->ops.tuner_ops.release == NULL)
return -ENODEV;
af9005_fe_refresh_state(fe);
*ber = state->ber;
return 0;
}
static int af9005_fe_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
struct af9005_fe_state *state = fe->demodulator_priv;
if (fe->ops.tuner_ops.release == NULL)
return -ENODEV;
af9005_fe_refresh_state(fe);
*unc = state->unc;
return 0;
}
static int af9005_fe_read_signal_strength(struct dvb_frontend *fe,
u16 * strength)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
u8 if_gain, rf_gain;
if (fe->ops.tuner_ops.release == NULL)
return -ENODEV;
ret =
af9005_read_ofdm_register(state->d, xd_r_reg_aagc_rf_gain,
&rf_gain);
if (ret)
return ret;
ret =
af9005_read_ofdm_register(state->d, xd_r_reg_aagc_if_gain,
&if_gain);
if (ret)
return ret;
/* this value has no real meaning, but i don't have the tables that relate
the rf and if gain with the dbm, so I just scale the value */
*strength = (512 - rf_gain - if_gain) << 7;
return 0;
}
static int af9005_fe_read_snr(struct dvb_frontend *fe, u16 * snr)
{
/* the snr can be derived from the ber and the constellation
but I don't think this kind of complex calculations belong
in the driver. I may be wrong.... */
return -ENOSYS;
}
static int af9005_fe_program_cfoe(struct dvb_usb_device *d, fe_bandwidth_t bw)
{
u8 temp0, temp1, temp2, temp3, buf[4];
int ret;
u32 NS_coeff1_2048Nu;
u32 NS_coeff1_8191Nu;
u32 NS_coeff1_8192Nu;
u32 NS_coeff1_8193Nu;
u32 NS_coeff2_2k;
u32 NS_coeff2_8k;
switch (bw) {
case BANDWIDTH_6_MHZ:
NS_coeff1_2048Nu = 0x2ADB6DC;
NS_coeff1_8191Nu = 0xAB7313;
NS_coeff1_8192Nu = 0xAB6DB7;
NS_coeff1_8193Nu = 0xAB685C;
NS_coeff2_2k = 0x156DB6E;
NS_coeff2_8k = 0x55B6DC;
break;
case BANDWIDTH_7_MHZ:
NS_coeff1_2048Nu = 0x3200001;
NS_coeff1_8191Nu = 0xC80640;
NS_coeff1_8192Nu = 0xC80000;
NS_coeff1_8193Nu = 0xC7F9C0;
NS_coeff2_2k = 0x1900000;
NS_coeff2_8k = 0x640000;
break;
case BANDWIDTH_8_MHZ:
NS_coeff1_2048Nu = 0x3924926;
NS_coeff1_8191Nu = 0xE4996E;
NS_coeff1_8192Nu = 0xE49249;
NS_coeff1_8193Nu = 0xE48B25;
NS_coeff2_2k = 0x1C92493;
NS_coeff2_8k = 0x724925;
break;
default:
err("Invalid bandwidth %d.", bw);
return -EINVAL;
}
/*
* write NS_coeff1_2048Nu
*/
temp0 = (u8) (NS_coeff1_2048Nu & 0x000000FF);
temp1 = (u8) ((NS_coeff1_2048Nu & 0x0000FF00) >> 8);
temp2 = (u8) ((NS_coeff1_2048Nu & 0x00FF0000) >> 16);
temp3 = (u8) ((NS_coeff1_2048Nu & 0x03000000) >> 24);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
/* cfoe_NS_2k_coeff1_25_24 */
ret = af9005_write_ofdm_register(d, 0xAE00, buf[0]);
if (ret)
return ret;
/* cfoe_NS_2k_coeff1_23_16 */
ret = af9005_write_ofdm_register(d, 0xAE01, buf[1]);
if (ret)
return ret;
/* cfoe_NS_2k_coeff1_15_8 */
ret = af9005_write_ofdm_register(d, 0xAE02, buf[2]);
if (ret)
return ret;
/* cfoe_NS_2k_coeff1_7_0 */
ret = af9005_write_ofdm_register(d, 0xAE03, buf[3]);
if (ret)
return ret;
/*
* write NS_coeff2_2k
*/
temp0 = (u8) ((NS_coeff2_2k & 0x0000003F));
temp1 = (u8) ((NS_coeff2_2k & 0x00003FC0) >> 6);
temp2 = (u8) ((NS_coeff2_2k & 0x003FC000) >> 14);
temp3 = (u8) ((NS_coeff2_2k & 0x01C00000) >> 22);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
ret = af9005_write_ofdm_register(d, 0xAE04, buf[0]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE05, buf[1]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE06, buf[2]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE07, buf[3]);
if (ret)
return ret;
/*
* write NS_coeff1_8191Nu
*/
temp0 = (u8) ((NS_coeff1_8191Nu & 0x000000FF));
temp1 = (u8) ((NS_coeff1_8191Nu & 0x0000FF00) >> 8);
temp2 = (u8) ((NS_coeff1_8191Nu & 0x00FFC000) >> 16);
temp3 = (u8) ((NS_coeff1_8191Nu & 0x03000000) >> 24);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
ret = af9005_write_ofdm_register(d, 0xAE08, buf[0]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE09, buf[1]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE0A, buf[2]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE0B, buf[3]);
if (ret)
return ret;
/*
* write NS_coeff1_8192Nu
*/
temp0 = (u8) (NS_coeff1_8192Nu & 0x000000FF);
temp1 = (u8) ((NS_coeff1_8192Nu & 0x0000FF00) >> 8);
temp2 = (u8) ((NS_coeff1_8192Nu & 0x00FFC000) >> 16);
temp3 = (u8) ((NS_coeff1_8192Nu & 0x03000000) >> 24);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
ret = af9005_write_ofdm_register(d, 0xAE0C, buf[0]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE0D, buf[1]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE0E, buf[2]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE0F, buf[3]);
if (ret)
return ret;
/*
* write NS_coeff1_8193Nu
*/
temp0 = (u8) ((NS_coeff1_8193Nu & 0x000000FF));
temp1 = (u8) ((NS_coeff1_8193Nu & 0x0000FF00) >> 8);
temp2 = (u8) ((NS_coeff1_8193Nu & 0x00FFC000) >> 16);
temp3 = (u8) ((NS_coeff1_8193Nu & 0x03000000) >> 24);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
ret = af9005_write_ofdm_register(d, 0xAE10, buf[0]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE11, buf[1]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE12, buf[2]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE13, buf[3]);
if (ret)
return ret;
/*
* write NS_coeff2_8k
*/
temp0 = (u8) ((NS_coeff2_8k & 0x0000003F));
temp1 = (u8) ((NS_coeff2_8k & 0x00003FC0) >> 6);
temp2 = (u8) ((NS_coeff2_8k & 0x003FC000) >> 14);
temp3 = (u8) ((NS_coeff2_8k & 0x01C00000) >> 22);
/* big endian to make 8051 happy */
buf[0] = temp3;
buf[1] = temp2;
buf[2] = temp1;
buf[3] = temp0;
ret = af9005_write_ofdm_register(d, 0xAE14, buf[0]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE15, buf[1]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE16, buf[2]);
if (ret)
return ret;
ret = af9005_write_ofdm_register(d, 0xAE17, buf[3]);
return ret;
}
static int af9005_fe_select_bw(struct dvb_usb_device *d, fe_bandwidth_t bw)
{
u8 temp;
switch (bw) {
case BANDWIDTH_6_MHZ:
temp = 0;
break;
case BANDWIDTH_7_MHZ:
temp = 1;
break;
case BANDWIDTH_8_MHZ:
temp = 2;
break;
default:
err("Invalid bandwidth %d.", bw);
return -EINVAL;
}
return af9005_write_register_bits(d, xd_g_reg_bw, reg_bw_pos,
reg_bw_len, temp);
}
static int af9005_fe_power(struct dvb_frontend *fe, int on)
{
struct af9005_fe_state *state = fe->demodulator_priv;
u8 temp = on;
int ret;
deb_info("power %s tuner\n", on ? "on" : "off");
ret = af9005_send_command(state->d, 0x03, &temp, 1, NULL, 0);
return ret;
}
static struct mt2060_config af9005_mt2060_config = {
0xC0
};
static struct qt1010_config af9005_qt1010_config = {
0xC4
};
static int af9005_fe_init(struct dvb_frontend *fe)
{
struct af9005_fe_state *state = fe->demodulator_priv;
struct dvb_usb_adapter *adap = fe->dvb->priv;
int ret, i, scriptlen;
u8 temp, temp0 = 0, temp1 = 0, temp2 = 0;
u8 buf[2];
u16 if1;
deb_info("in af9005_fe_init\n");
/* reset */
deb_info("reset\n");
if ((ret =
af9005_write_register_bits(state->d, xd_I2C_reg_ofdm_rst_en,
4, 1, 0x01)))
return ret;
if ((ret = af9005_write_ofdm_register(state->d, APO_REG_RESET, 0)))
return ret;
/* clear ofdm reset */
deb_info("clear ofdm reset\n");
for (i = 0; i < 150; i++) {
if ((ret =
af9005_read_ofdm_register(state->d,
xd_I2C_reg_ofdm_rst, &temp)))
return ret;
if (temp & (regmask[reg_ofdm_rst_len - 1] << reg_ofdm_rst_pos))
break;
msleep(10);
}
if (i == 150)
return -ETIMEDOUT;
/*FIXME in the dump
write B200 A9
write xd_g_reg_ofsm_clk 7
read eepr c6 (2)
read eepr c7 (2)
misc ctrl 3 -> 1
read eepr ca (6)
write xd_g_reg_ofsm_clk 0
write B200 a1
*/
ret = af9005_write_ofdm_register(state->d, 0xb200, 0xa9);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, xd_g_reg_ofsm_clk, 0x07);
if (ret)
return ret;
temp = 0x01;
ret = af9005_send_command(state->d, 0x03, &temp, 1, NULL, 0);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, xd_g_reg_ofsm_clk, 0x00);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, 0xb200, 0xa1);
if (ret)
return ret;
temp = regmask[reg_ofdm_rst_len - 1] << reg_ofdm_rst_pos;
if ((ret =
af9005_write_register_bits(state->d, xd_I2C_reg_ofdm_rst,
reg_ofdm_rst_pos, reg_ofdm_rst_len, 1)))
return ret;
ret = af9005_write_register_bits(state->d, xd_I2C_reg_ofdm_rst,
reg_ofdm_rst_pos, reg_ofdm_rst_len, 0);
if (ret)
return ret;
/* don't know what register aefc is, but this is what the windows driver does */
ret = af9005_write_ofdm_register(state->d, 0xaefc, 0);
if (ret)
return ret;
/* set stand alone chip */
deb_info("set stand alone chip\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_dca_stand_alone,
reg_dca_stand_alone_pos,
reg_dca_stand_alone_len, 1)))
return ret;
/* set dca upper & lower chip */
deb_info("set dca upper & lower chip\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_dca_upper_chip,
reg_dca_upper_chip_pos,
reg_dca_upper_chip_len, 0)))
return ret;
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_dca_lower_chip,
reg_dca_lower_chip_pos,
reg_dca_lower_chip_len, 0)))
return ret;
/* set 2wire master clock to 0x14 (for 60KHz) */
deb_info("set 2wire master clock to 0x14 (for 60KHz)\n");
if ((ret =
af9005_write_ofdm_register(state->d, xd_I2C_i2c_m_period, 0x14)))
return ret;
/* clear dca enable chip */
deb_info("clear dca enable chip\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_dca_en,
reg_dca_en_pos, reg_dca_en_len, 0)))
return ret;
/* FIXME these are register bits, but I don't know which ones */
ret = af9005_write_ofdm_register(state->d, 0xa16c, 1);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, 0xa3c1, 0);
if (ret)
return ret;
/* init other parameters: program cfoe and select bandwidth */
deb_info("program cfoe\n");
if ((ret = af9005_fe_program_cfoe(state->d, BANDWIDTH_6_MHZ)))
return ret;
/* set read-update bit for constellation */
deb_info("set read-update bit for constellation\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_feq_read_update,
reg_feq_read_update_pos,
reg_feq_read_update_len, 1)))
return ret;
/* sample code has a set MPEG TS code here
but sniffing reveals that it doesn't do it */
/* set read-update bit to 1 for DCA constellation */
deb_info("set read-update bit 1 for DCA constellation\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_reg_dca_read_update,
reg_dca_read_update_pos,
reg_dca_read_update_len, 1)))
return ret;
/* enable fec monitor */
deb_info("enable fec monitor\n");
if ((ret =
af9005_write_register_bits(state->d, xd_p_fec_vtb_rsd_mon_en,
fec_vtb_rsd_mon_en_pos,
fec_vtb_rsd_mon_en_len, 1)))
return ret;
/* FIXME should be register bits, I don't know which ones */
ret = af9005_write_ofdm_register(state->d, 0xa601, 0);
/* set api_retrain_never_freeze */
deb_info("set api_retrain_never_freeze\n");
if ((ret = af9005_write_ofdm_register(state->d, 0xaefb, 0x01)))
return ret;
/* load init script */
deb_info("load init script\n");
scriptlen = sizeof(script) / sizeof(RegDesc);
for (i = 0; i < scriptlen; i++) {
if ((ret =
af9005_write_register_bits(state->d, script[i].reg,
script[i].pos,
script[i].len, script[i].val)))
return ret;
/* save 3 bytes of original fcw */
if (script[i].reg == 0xae18)
temp2 = script[i].val;
if (script[i].reg == 0xae19)
temp1 = script[i].val;
if (script[i].reg == 0xae1a)
temp0 = script[i].val;
/* save original unplug threshold */
if (script[i].reg == xd_p_reg_unplug_th)
state->original_if_unplug_th = script[i].val;
if (script[i].reg == xd_p_reg_unplug_rf_gain_th)
state->original_rf_unplug_th = script[i].val;
if (script[i].reg == xd_p_reg_unplug_dtop_if_gain_th)
state->original_dtop_if_unplug_th = script[i].val;
if (script[i].reg == xd_p_reg_unplug_dtop_rf_gain_th)
state->original_dtop_rf_unplug_th = script[i].val;
}
state->original_fcw =
((u32) temp2 << 16) + ((u32) temp1 << 8) + (u32) temp0;
/* save original TOPs */
deb_info("save original TOPs\n");
/* RF TOP */
ret =
af9005_read_word_agc(state->d,
xd_p_reg_aagc_rf_top_numerator_9_8,
xd_p_reg_aagc_rf_top_numerator_7_0, 0, 2,
&state->original_rf_top);
if (ret)
return ret;
/* IF TOP */
ret =
af9005_read_word_agc(state->d,
xd_p_reg_aagc_if_top_numerator_9_8,
xd_p_reg_aagc_if_top_numerator_7_0, 0, 2,
&state->original_if_top);
if (ret)
return ret;
/* ACI 0 IF TOP */
ret =
af9005_read_word_agc(state->d, 0xA60E, 0xA60A, 4, 2,
&state->original_aci0_if_top);
if (ret)
return ret;
/* ACI 1 IF TOP */
ret =
af9005_read_word_agc(state->d, 0xA60E, 0xA60B, 6, 2,
&state->original_aci1_if_top);
if (ret)
return ret;
/* attach tuner and init */
if (fe->ops.tuner_ops.release == NULL) {
/* read tuner and board id from eeprom */
ret = af9005_read_eeprom(adap->dev, 0xc6, buf, 2);
if (ret) {
err("Impossible to read EEPROM\n");
return ret;
}
deb_info("Tuner id %d, board id %d\n", buf[0], buf[1]);
switch (buf[0]) {
case 2: /* MT2060 */
/* read if1 from eeprom */
ret = af9005_read_eeprom(adap->dev, 0xc8, buf, 2);
if (ret) {
err("Impossible to read EEPROM\n");
return ret;
}
if1 = (u16) (buf[0] << 8) + buf[1];
if (dvb_attach(mt2060_attach, fe, &adap->dev->i2c_adap,
&af9005_mt2060_config, if1) == NULL) {
deb_info("MT2060 attach failed\n");
return -ENODEV;
}
break;
case 3: /* QT1010 */
case 9: /* QT1010B */
if (dvb_attach(qt1010_attach, fe, &adap->dev->i2c_adap,
&af9005_qt1010_config) ==NULL) {
deb_info("QT1010 attach failed\n");
return -ENODEV;
}
break;
default:
err("Unsupported tuner type %d", buf[0]);
return -ENODEV;
}
ret = fe->ops.tuner_ops.init(fe);
if (ret)
return ret;
}
deb_info("profit!\n");
return 0;
}
static int af9005_fe_sleep(struct dvb_frontend *fe)
{
return af9005_fe_power(fe, 0);
}
static int af9005_ts_bus_ctrl(struct dvb_frontend *fe, int acquire)
{
struct af9005_fe_state *state = fe->demodulator_priv;
if (acquire) {
state->opened++;
} else {
state->opened--;
if (!state->opened)
af9005_led_control(state->d, 0);
}
return 0;
}
static int af9005_fe_set_frontend(struct dvb_frontend *fe,
struct dvb_frontend_parameters *fep)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
u8 temp, temp0, temp1, temp2;
deb_info("af9005_fe_set_frontend freq %d bw %d\n", fep->frequency,
fep->u.ofdm.bandwidth);
if (fe->ops.tuner_ops.release == NULL) {
err("Tuner not attached");
return -ENODEV;
}
deb_info("turn off led\n");
/* not in the log */
ret = af9005_led_control(state->d, 0);
if (ret)
return ret;
/* not sure about the bits */
ret = af9005_write_register_bits(state->d, XD_MP2IF_MISC, 2, 1, 0);
if (ret)
return ret;
/* set FCW to default value */
deb_info("set FCW to default value\n");
temp0 = (u8) (state->original_fcw & 0x000000ff);
temp1 = (u8) ((state->original_fcw & 0x0000ff00) >> 8);
temp2 = (u8) ((state->original_fcw & 0x00ff0000) >> 16);
ret = af9005_write_ofdm_register(state->d, 0xae1a, temp0);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, 0xae19, temp1);
if (ret)
return ret;
ret = af9005_write_ofdm_register(state->d, 0xae18, temp2);
if (ret)
return ret;
/* restore original TOPs */
deb_info("restore original TOPs\n");
ret =
af9005_write_word_agc(state->d,
xd_p_reg_aagc_rf_top_numerator_9_8,
xd_p_reg_aagc_rf_top_numerator_7_0, 0, 2,
state->original_rf_top);
if (ret)
return ret;
ret =
af9005_write_word_agc(state->d,
xd_p_reg_aagc_if_top_numerator_9_8,
xd_p_reg_aagc_if_top_numerator_7_0, 0, 2,
state->original_if_top);
if (ret)
return ret;
ret =
af9005_write_word_agc(state->d, 0xA60E, 0xA60A, 4, 2,
state->original_aci0_if_top);
if (ret)
return ret;
ret =
af9005_write_word_agc(state->d, 0xA60E, 0xA60B, 6, 2,
state->original_aci1_if_top);
if (ret)
return ret;
/* select bandwidth */
deb_info("select bandwidth");
ret = af9005_fe_select_bw(state->d, fep->u.ofdm.bandwidth);
if (ret)
return ret;
ret = af9005_fe_program_cfoe(state->d, fep->u.ofdm.bandwidth);
if (ret)
return ret;
/* clear easy mode flag */
deb_info("clear easy mode flag\n");
ret = af9005_write_ofdm_register(state->d, 0xaefd, 0);
if (ret)
return ret;
/* set unplug threshold to original value */
deb_info("set unplug threshold to original value\n");
ret =
af9005_write_ofdm_register(state->d, xd_p_reg_unplug_th,
state->original_if_unplug_th);
if (ret)
return ret;
/* set tuner */
deb_info("set tuner\n");
ret = fe->ops.tuner_ops.set_params(fe, fep);
if (ret)
return ret;
/* trigger ofsm */
deb_info("trigger ofsm\n");
temp = 0;
ret = af9005_write_tuner_registers(state->d, 0xffff, &temp, 1);
if (ret)
return ret;
/* clear retrain and freeze flag */
deb_info("clear retrain and freeze flag\n");
ret =
af9005_write_register_bits(state->d,
xd_p_reg_api_retrain_request,
reg_api_retrain_request_pos, 2, 0);
if (ret)
return ret;
/* reset pre viterbi and post viterbi registers and statistics */
af9005_reset_pre_viterbi(fe);
af9005_reset_post_viterbi(fe);
state->pre_vit_error_count = 0;
state->pre_vit_bit_count = 0;
state->ber = 0;
state->post_vit_error_count = 0;
/* state->unc = 0; commented out since it should be ever increasing */
state->abort_count = 0;
state->next_status_check = jiffies;
state->strong = -1;
return 0;
}
static int af9005_fe_get_frontend(struct dvb_frontend *fe,
struct dvb_frontend_parameters *fep)
{
struct af9005_fe_state *state = fe->demodulator_priv;
int ret;
u8 temp;
/* mode */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_const,
reg_tpsd_const_pos, reg_tpsd_const_len,
&temp);
if (ret)
return ret;
deb_info("===== fe_get_frontend ==============\n");
deb_info("CONSTELLATION ");
switch (temp) {
case 0:
fep->u.ofdm.constellation = QPSK;
deb_info("QPSK\n");
break;
case 1:
fep->u.ofdm.constellation = QAM_16;
deb_info("QAM_16\n");
break;
case 2:
fep->u.ofdm.constellation = QAM_64;
deb_info("QAM_64\n");
break;
}
/* tps hierarchy and alpha value */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_hier,
reg_tpsd_hier_pos, reg_tpsd_hier_len,
&temp);
if (ret)
return ret;
deb_info("HIERARCHY ");
switch (temp) {
case 0:
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
deb_info("NONE\n");
break;
case 1:
fep->u.ofdm.hierarchy_information = HIERARCHY_1;
deb_info("1\n");
break;
case 2:
fep->u.ofdm.hierarchy_information = HIERARCHY_2;
deb_info("2\n");
break;
case 3:
fep->u.ofdm.hierarchy_information = HIERARCHY_4;
deb_info("4\n");
break;
}
/* high/low priority */
ret =
af9005_read_register_bits(state->d, xd_g_reg_dec_pri,
reg_dec_pri_pos, reg_dec_pri_len, &temp);
if (ret)
return ret;
/* if temp is set = high priority */
deb_info("PRIORITY %s\n", temp ? "high" : "low");
/* high coderate */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_hpcr,
reg_tpsd_hpcr_pos, reg_tpsd_hpcr_len,
&temp);
if (ret)
return ret;
deb_info("CODERATE HP ");
switch (temp) {
case 0:
fep->u.ofdm.code_rate_HP = FEC_1_2;
deb_info("FEC_1_2\n");
break;
case 1:
fep->u.ofdm.code_rate_HP = FEC_2_3;
deb_info("FEC_2_3\n");
break;
case 2:
fep->u.ofdm.code_rate_HP = FEC_3_4;
deb_info("FEC_3_4\n");
break;
case 3:
fep->u.ofdm.code_rate_HP = FEC_5_6;
deb_info("FEC_5_6\n");
break;
case 4:
fep->u.ofdm.code_rate_HP = FEC_7_8;
deb_info("FEC_7_8\n");
break;
}
/* low coderate */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_lpcr,
reg_tpsd_lpcr_pos, reg_tpsd_lpcr_len,
&temp);
if (ret)
return ret;
deb_info("CODERATE LP ");
switch (temp) {
case 0:
fep->u.ofdm.code_rate_LP = FEC_1_2;
deb_info("FEC_1_2\n");
break;
case 1:
fep->u.ofdm.code_rate_LP = FEC_2_3;
deb_info("FEC_2_3\n");
break;
case 2:
fep->u.ofdm.code_rate_LP = FEC_3_4;
deb_info("FEC_3_4\n");
break;
case 3:
fep->u.ofdm.code_rate_LP = FEC_5_6;
deb_info("FEC_5_6\n");
break;
case 4:
fep->u.ofdm.code_rate_LP = FEC_7_8;
deb_info("FEC_7_8\n");
break;
}
/* guard interval */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_gi,
reg_tpsd_gi_pos, reg_tpsd_gi_len, &temp);
if (ret)
return ret;
deb_info("GUARD INTERVAL ");
switch (temp) {
case 0:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
deb_info("1_32\n");
break;
case 1:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
deb_info("1_16\n");
break;
case 2:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
deb_info("1_8\n");
break;
case 3:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
deb_info("1_4\n");
break;
}
/* fft */
ret =
af9005_read_register_bits(state->d, xd_g_reg_tpsd_txmod,
reg_tpsd_txmod_pos, reg_tpsd_txmod_len,
&temp);
if (ret)
return ret;
deb_info("TRANSMISSION MODE ");
switch (temp) {
case 0:
fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
deb_info("2K\n");
break;
case 1:
fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
deb_info("8K\n");
break;
}
/* bandwidth */
ret =
af9005_read_register_bits(state->d, xd_g_reg_bw, reg_bw_pos,
reg_bw_len, &temp);
deb_info("BANDWIDTH ");
switch (temp) {
case 0:
fep->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
deb_info("6\n");
break;
case 1:
fep->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
deb_info("7\n");
break;
case 2:
fep->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
deb_info("8\n");
break;
}
return 0;
}
static void af9005_fe_release(struct dvb_frontend *fe)
{
struct af9005_fe_state *state =
(struct af9005_fe_state *)fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops af9005_fe_ops;
struct dvb_frontend *af9005_fe_attach(struct dvb_usb_device *d)
{
struct af9005_fe_state *state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct af9005_fe_state), GFP_KERNEL);
if (state == NULL)
goto error;
deb_info("attaching frontend af9005\n");
state->d = d;
state->opened = 0;
memcpy(&state->frontend.ops, &af9005_fe_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
return NULL;
}
static struct dvb_frontend_ops af9005_fe_ops = {
.info = {
.name = "AF9005 USB DVB-T",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 250000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = af9005_fe_release,
.init = af9005_fe_init,
.sleep = af9005_fe_sleep,
.ts_bus_ctrl = af9005_ts_bus_ctrl,
.set_frontend = af9005_fe_set_frontend,
.get_frontend = af9005_fe_get_frontend,
.read_status = af9005_fe_read_status,
.read_ber = af9005_fe_read_ber,
.read_signal_strength = af9005_fe_read_signal_strength,
.read_snr = af9005_fe_read_snr,
.read_ucblocks = af9005_fe_read_unc_blocks,
};