linux-stable-rt/sound/mips/hal2.h

246 lines
8.2 KiB
C

#ifndef __HAL2_H
#define __HAL2_H
/*
* Driver for HAL2 sound processors
* Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
* Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/types.h>
/* Indirect status register */
#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
#define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
/* Revision register */
#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
/* Indirect address register */
/*
* Address of indirect internal register to be accessed. A write to this
* register initiates read or write access to the indirect registers in the
* HAL2. Note that there af four indirect data registers for write access to
* registers larger than 16 byte.
*/
#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
/* block the register resides in */
/* 1=DMA Port */
/* 9=Global DMA Control */
/* 2=Bresenham */
/* 3=Unix Timer */
#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
/* blockin which the indirect */
/* register resides */
/* If IAR_TYPE_M=DMA Port: */
/* 1=Synth In */
/* 2=AES In */
/* 3=AES Out */
/* 4=DAC Out */
/* 5=ADC Out */
/* 6=Synth Control */
/* If IAR_TYPE_M=Global DMA Control: */
/* 1=Control */
/* If IAR_TYPE_M=Bresenham: */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
/* If IAR_TYPE_M=Unix Timer: */
/* 1=Unix Timer */
#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
#define H2_IAR_PARAM 0x000C /* Parameter Select */
#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
/* 00:word0 */
/* 01:word1 */
/* 10:word2 */
/* 11:word3 */
/*
* HAL2 internal addressing
*
* The HAL2 has "indirect registers" (idr) which are accessed by writing to the
* Indirect Data registers. Write the address to the Indirect Address register
* to transfer the data.
*
* We define the H2IR_* to the read address and H2IW_* to the write address and
* H2I_* to be fields in whatever register is referred to.
*
* When we write to indirect registers which are larger than one word (16 bit)
* we have to fill more than one indirect register before writing. When we read
* back however we have to read several times, each time with different Read
* Back Indexes (there are defs for doing this easily).
*/
/*
* Relay Control
*/
#define H2I_RELAY_C 0x9100
#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
/* DMA port enable */
#define H2I_DMA_PORT_EN 0x9104
#define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
#define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
#define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
#define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
#define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
#define H2I_DMA_END 0x9108 /* global dma endian select */
#define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
#define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
#define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
#define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
#define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
/* 0=b_end 1=l_end */
#define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
#define H2I_SYNTH_C 0x1104 /* Synth DMA control */
#define H2I_AESRX_C 0x1204 /* AES RX dma control */
#define H2I_C_TS_EN 0x20 /* Timestamp enable */
#define H2I_C_TS_FRMT 0x40 /* Timestamp format */
#define H2I_C_NAUDIO 0x80 /* Sign extend */
/* AESRX CTL, 16 bit */
#define H2I_AESTX_C 0x1304 /* AES TX DMA control */
#define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
#define H2I_AESTX_C_CLKID_M 0x18
#define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
#define H2I_AESTX_C_DATAT_M 0x300
/* CODEC registers */
#define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
#define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
#define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
#define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
/* Bits in CTL1 register */
#define H2I_C1_DMA_SHIFT 0 /* DMA channel */
#define H2I_C1_DMA_M 0x7
#define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
#define H2I_C1_CLKID_M 0x18
#define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
#define H2I_C1_DATAT_M 0x300
/* Bits in CTL2 register */
#define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
#define H2I_C2_R_GAIN_M 0xf
#define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
#define H2I_C2_L_GAIN_M 0xf0
#define H2I_C2_R_SEL 0x100 /* right input select */
#define H2I_C2_L_SEL 0x200 /* left input select */
#define H2I_C2_MUTE 0x400 /* mute */
#define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
#define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
#define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
#define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
#define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
#define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
#define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
/* Clock generator CTL 1, 16 bit */
#define H2I_BRES1_C1 0x2104
#define H2I_BRES2_C1 0x2204
#define H2I_BRES3_C1 0x2304
#define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
#define H2I_BRES_C1_M 0x03
/* Clock generator CTL 2, 32 bit */
#define H2I_BRES1_C2 0x2108
#define H2I_BRES2_C2 0x2208
#define H2I_BRES3_C2 0x2308
#define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
#define H2I_BRES_C2_INC_M 0xffff
#define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
#define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
/* Unix timer, 64 bit */
#define H2I_UTIME 0x3104
#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
struct hal2_ctl_regs {
u32 _unused0[4];
u32 isr; /* 0x10 Status Register */
u32 _unused1[3];
u32 rev; /* 0x20 Revision Register */
u32 _unused2[3];
u32 iar; /* 0x30 Indirect Address Register */
u32 _unused3[3];
u32 idr0; /* 0x40 Indirect Data Register 0 */
u32 _unused4[3];
u32 idr1; /* 0x50 Indirect Data Register 1 */
u32 _unused5[3];
u32 idr2; /* 0x60 Indirect Data Register 2 */
u32 _unused6[3];
u32 idr3; /* 0x70 Indirect Data Register 3 */
};
struct hal2_aes_regs {
u32 rx_stat[2]; /* Status registers */
u32 rx_cr[2]; /* Control registers */
u32 rx_ud[4]; /* User data window */
u32 rx_st[24]; /* Channel status data */
u32 tx_stat[1]; /* Status register */
u32 tx_cr[3]; /* Control registers */
u32 tx_ud[4]; /* User data window */
u32 tx_st[24]; /* Channel status data */
};
struct hal2_vol_regs {
u32 right; /* Right volume */
u32 left; /* Left volume */
};
struct hal2_syn_regs {
u32 _unused0[2];
u32 page; /* DOC Page register */
u32 regsel; /* DOC Register selection */
u32 dlow; /* DOC Data low */
u32 dhigh; /* DOC Data high */
u32 irq; /* IRQ Status */
u32 dram; /* DRAM Access */
};
#endif /* __HAL2_H */