linux-stable-rt/drivers/acpi/sleep/main.c

463 lines
11 KiB
C

/*
* sleep.c - ACPI sleep support.
*
* Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
* Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
* Copyright (c) 2000-2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2.
*
*/
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/dmi.h>
#include <linux/device.h>
#include <linux/suspend.h>
#include <asm/io.h>
#include <acpi/acpi_bus.h>
#include <acpi/acpi_drivers.h>
#include "sleep.h"
u8 sleep_states[ACPI_S_STATE_COUNT];
#ifdef CONFIG_PM_SLEEP
static u32 acpi_target_sleep_state = ACPI_STATE_S0;
#endif
int acpi_sleep_prepare(u32 acpi_state)
{
#ifdef CONFIG_ACPI_SLEEP
/* do we have a wakeup address for S2 and S3? */
if (acpi_state == ACPI_STATE_S3) {
if (!acpi_wakeup_address) {
return -EFAULT;
}
acpi_set_firmware_waking_vector((acpi_physical_address)
virt_to_phys((void *)
acpi_wakeup_address));
}
ACPI_FLUSH_CPU_CACHE();
acpi_enable_wakeup_device_prep(acpi_state);
#endif
acpi_enter_sleep_state_prep(acpi_state);
return 0;
}
#ifdef CONFIG_SUSPEND
static struct platform_suspend_ops acpi_pm_ops;
extern void do_suspend_lowlevel(void);
static u32 acpi_suspend_states[] = {
[PM_SUSPEND_ON] = ACPI_STATE_S0,
[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
[PM_SUSPEND_MEM] = ACPI_STATE_S3,
[PM_SUSPEND_MAX] = ACPI_STATE_S5
};
static int init_8259A_after_S1;
/**
* acpi_pm_set_target - Set the target system sleep state to the state
* associated with given @pm_state, if supported.
*/
static int acpi_pm_set_target(suspend_state_t pm_state)
{
u32 acpi_state = acpi_suspend_states[pm_state];
int error = 0;
if (sleep_states[acpi_state]) {
acpi_target_sleep_state = acpi_state;
} else {
printk(KERN_ERR "ACPI does not support this state: %d\n",
pm_state);
error = -ENOSYS;
}
return error;
}
/**
* acpi_pm_prepare - Do preliminary suspend work.
*
* If necessary, set the firmware waking vector and do arch-specific
* nastiness to get the wakeup code to the waking vector.
*/
static int acpi_pm_prepare(void)
{
int error = acpi_sleep_prepare(acpi_target_sleep_state);
if (error)
acpi_target_sleep_state = ACPI_STATE_S0;
return error;
}
/**
* acpi_pm_enter - Actually enter a sleep state.
* @pm_state: ignored
*
* Flush caches and go to sleep. For STR we have to call arch-specific
* assembly, which in turn call acpi_enter_sleep_state().
* It's unfortunate, but it works. Please fix if you're feeling frisky.
*/
static int acpi_pm_enter(suspend_state_t pm_state)
{
acpi_status status = AE_OK;
unsigned long flags = 0;
u32 acpi_state = acpi_target_sleep_state;
ACPI_FLUSH_CPU_CACHE();
/* Do arch specific saving of state. */
if (acpi_state == ACPI_STATE_S3) {
int error = acpi_save_state_mem();
if (error) {
acpi_target_sleep_state = ACPI_STATE_S0;
return error;
}
}
local_irq_save(flags);
acpi_enable_wakeup_device(acpi_state);
switch (acpi_state) {
case ACPI_STATE_S1:
barrier();
status = acpi_enter_sleep_state(acpi_state);
break;
case ACPI_STATE_S3:
do_suspend_lowlevel();
break;
}
/* ACPI 3.0 specs (P62) says that it's the responsabilty
* of the OSPM to clear the status bit [ implying that the
* POWER_BUTTON event should not reach userspace ]
*/
if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3))
acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
local_irq_restore(flags);
printk(KERN_DEBUG "Back to C!\n");
/* restore processor state */
if (acpi_state == ACPI_STATE_S3)
acpi_restore_state_mem();
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
/**
* acpi_pm_finish - Finish up suspend sequence.
*
* This is called after we wake back up (or if entering the sleep state
* failed).
*/
static void acpi_pm_finish(void)
{
u32 acpi_state = acpi_target_sleep_state;
acpi_disable_wakeup_device(acpi_state);
acpi_leave_sleep_state(acpi_state);
/* reset firmware waking vector */
acpi_set_firmware_waking_vector((acpi_physical_address) 0);
acpi_target_sleep_state = ACPI_STATE_S0;
#ifdef CONFIG_X86
if (init_8259A_after_S1) {
printk("Broken toshiba laptop -> kicking interrupts\n");
init_8259A(0);
}
#endif
}
static int acpi_pm_state_valid(suspend_state_t pm_state)
{
u32 acpi_state;
switch (pm_state) {
case PM_SUSPEND_ON:
case PM_SUSPEND_STANDBY:
case PM_SUSPEND_MEM:
acpi_state = acpi_suspend_states[pm_state];
return sleep_states[acpi_state];
default:
return 0;
}
}
static struct platform_suspend_ops acpi_pm_ops = {
.valid = acpi_pm_state_valid,
.set_target = acpi_pm_set_target,
.prepare = acpi_pm_prepare,
.enter = acpi_pm_enter,
.finish = acpi_pm_finish,
};
/*
* Toshiba fails to preserve interrupts over S1, reinitialization
* of 8259 is needed after S1 resume.
*/
static int __init init_ints_after_s1(const struct dmi_system_id *d)
{
printk(KERN_WARNING "%s with broken S1 detected.\n", d->ident);
init_8259A_after_S1 = 1;
return 0;
}
static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
{
.callback = init_ints_after_s1,
.ident = "Toshiba Satellite 4030cdt",
.matches = {DMI_MATCH(DMI_PRODUCT_NAME, "S4030CDT/4.3"),},
},
{},
};
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATION
static int acpi_hibernation_start(void)
{
acpi_target_sleep_state = ACPI_STATE_S4;
return 0;
}
static int acpi_hibernation_prepare(void)
{
return acpi_sleep_prepare(ACPI_STATE_S4);
}
static int acpi_hibernation_enter(void)
{
acpi_status status = AE_OK;
unsigned long flags = 0;
ACPI_FLUSH_CPU_CACHE();
local_irq_save(flags);
acpi_enable_wakeup_device(ACPI_STATE_S4);
/* This shouldn't return. If it returns, we have a problem */
status = acpi_enter_sleep_state(ACPI_STATE_S4);
local_irq_restore(flags);
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static void acpi_hibernation_leave(void)
{
/*
* If ACPI is not enabled by the BIOS and the boot kernel, we need to
* enable it here.
*/
acpi_enable();
}
static void acpi_hibernation_finish(void)
{
/*
* If ACPI is not enabled by the BIOS and the boot kernel, we need to
* enable it here.
*/
acpi_enable();
acpi_disable_wakeup_device(ACPI_STATE_S4);
acpi_leave_sleep_state(ACPI_STATE_S4);
/* reset firmware waking vector */
acpi_set_firmware_waking_vector((acpi_physical_address) 0);
acpi_target_sleep_state = ACPI_STATE_S0;
}
static int acpi_hibernation_pre_restore(void)
{
acpi_status status;
status = acpi_hw_disable_all_gpes();
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static void acpi_hibernation_restore_cleanup(void)
{
acpi_hw_enable_all_runtime_gpes();
}
static struct platform_hibernation_ops acpi_hibernation_ops = {
.start = acpi_hibernation_start,
.pre_snapshot = acpi_hibernation_prepare,
.finish = acpi_hibernation_finish,
.prepare = acpi_hibernation_prepare,
.enter = acpi_hibernation_enter,
.leave = acpi_hibernation_leave,
.pre_restore = acpi_hibernation_pre_restore,
.restore_cleanup = acpi_hibernation_restore_cleanup,
};
#endif /* CONFIG_HIBERNATION */
int acpi_suspend(u32 acpi_state)
{
suspend_state_t states[] = {
[1] = PM_SUSPEND_STANDBY,
[3] = PM_SUSPEND_MEM,
[5] = PM_SUSPEND_MAX
};
if (acpi_state < 6 && states[acpi_state])
return pm_suspend(states[acpi_state]);
if (acpi_state == 4)
return hibernate();
return -EINVAL;
}
#ifdef CONFIG_PM_SLEEP
/**
* acpi_pm_device_sleep_state - return preferred power state of ACPI device
* in the system sleep state given by %acpi_target_sleep_state
* @dev: device to examine
* @wake: if set, the device should be able to wake up the system
* @d_min_p: used to store the upper limit of allowed states range
* Return value: preferred power state of the device on success, -ENODEV on
* failure (ie. if there's no 'struct acpi_device' for @dev)
*
* Find the lowest power (highest number) ACPI device power state that
* device @dev can be in while the system is in the sleep state represented
* by %acpi_target_sleep_state. If @wake is nonzero, the device should be
* able to wake up the system from this sleep state. If @d_min_p is set,
* the highest power (lowest number) device power state of @dev allowed
* in this system sleep state is stored at the location pointed to by it.
*
* The caller must ensure that @dev is valid before using this function.
* The caller is also responsible for figuring out if the device is
* supposed to be able to wake up the system and passing this information
* via @wake.
*/
int acpi_pm_device_sleep_state(struct device *dev, int wake, int *d_min_p)
{
acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
struct acpi_device *adev;
char acpi_method[] = "_SxD";
unsigned long d_min, d_max;
if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
printk(KERN_DEBUG "ACPI handle has no context!\n");
return -ENODEV;
}
acpi_method[2] = '0' + acpi_target_sleep_state;
/*
* If the sleep state is S0, we will return D3, but if the device has
* _S0W, we will use the value from _S0W
*/
d_min = ACPI_STATE_D0;
d_max = ACPI_STATE_D3;
/*
* If present, _SxD methods return the minimum D-state (highest power
* state) we can use for the corresponding S-states. Otherwise, the
* minimum D-state is D0 (ACPI 3.x).
*
* NOTE: We rely on acpi_evaluate_integer() not clobbering the integer
* provided -- that's our fault recovery, we ignore retval.
*/
if (acpi_target_sleep_state > ACPI_STATE_S0)
acpi_evaluate_integer(handle, acpi_method, NULL, &d_min);
/*
* If _PRW says we can wake up the system from the target sleep state,
* the D-state returned by _SxD is sufficient for that (we assume a
* wakeup-aware driver if wake is set). Still, if _SxW exists
* (ACPI 3.x), it should return the maximum (lowest power) D-state that
* can wake the system. _S0W may be valid, too.
*/
if (acpi_target_sleep_state == ACPI_STATE_S0 ||
(wake && adev->wakeup.state.enabled &&
adev->wakeup.sleep_state <= acpi_target_sleep_state)) {
acpi_method[3] = 'W';
acpi_evaluate_integer(handle, acpi_method, NULL, &d_max);
/* Sanity check */
if (d_max < d_min)
d_min = d_max;
}
if (d_min_p)
*d_min_p = d_min;
return d_max;
}
#endif
static void acpi_power_off_prepare(void)
{
/* Prepare to power off the system */
acpi_sleep_prepare(ACPI_STATE_S5);
}
static void acpi_power_off(void)
{
/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
printk("%s called\n", __FUNCTION__);
local_irq_disable();
acpi_enable_wakeup_device(ACPI_STATE_S5);
acpi_enter_sleep_state(ACPI_STATE_S5);
}
int __init acpi_sleep_init(void)
{
acpi_status status;
u8 type_a, type_b;
#ifdef CONFIG_SUSPEND
int i = 0;
dmi_check_system(acpisleep_dmi_table);
#endif
if (acpi_disabled)
return 0;
sleep_states[ACPI_STATE_S0] = 1;
printk(KERN_INFO PREFIX "(supports S0");
#ifdef CONFIG_SUSPEND
for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) {
status = acpi_get_sleep_type_data(i, &type_a, &type_b);
if (ACPI_SUCCESS(status)) {
sleep_states[i] = 1;
printk(" S%d", i);
}
}
suspend_set_ops(&acpi_pm_ops);
#endif
#ifdef CONFIG_HIBERNATION
status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b);
if (ACPI_SUCCESS(status)) {
hibernation_set_ops(&acpi_hibernation_ops);
sleep_states[ACPI_STATE_S4] = 1;
printk(" S4");
}
#endif
status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b);
if (ACPI_SUCCESS(status)) {
sleep_states[ACPI_STATE_S5] = 1;
printk(" S5");
pm_power_off_prepare = acpi_power_off_prepare;
pm_power_off = acpi_power_off;
}
printk(")\n");
return 0;
}