linux-stable-rt/arch/arm/plat-omap/dma.c

1502 lines
36 KiB
C

/*
* linux/arch/arm/plat-omap/dma.c
*
* Copyright (C) 2003 Nokia Corporation
* Author: Juha Yrjölä <juha.yrjola@nokia.com>
* DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com>
* Graphics DMA and LCD DMA graphics tranformations
* by Imre Deak <imre.deak@nokia.com>
* OMAP2 support Copyright (C) 2004-2005 Texas Instruments, Inc.
* Merged to support both OMAP1 and OMAP2 by Tony Lindgren <tony@atomide.com>
* Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc.
*
* Support functions for the OMAP internal DMA channels.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/hardware.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/arch/tc.h>
#define DEBUG_PRINTS
#undef DEBUG_PRINTS
#ifdef DEBUG_PRINTS
#define debug_printk(x) printk x
#else
#define debug_printk(x)
#endif
#define OMAP_DMA_ACTIVE 0x01
#define OMAP_DMA_CCR_EN (1 << 7)
#define OMAP2_DMA_CSR_CLEAR_MASK 0xffe
#define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec)
static int enable_1510_mode = 0;
struct omap_dma_lch {
int next_lch;
int dev_id;
u16 saved_csr;
u16 enabled_irqs;
const char *dev_name;
void (* callback)(int lch, u16 ch_status, void *data);
void *data;
long flags;
};
static int dma_chan_count;
static spinlock_t dma_chan_lock;
static struct omap_dma_lch dma_chan[OMAP_LOGICAL_DMA_CH_COUNT];
static const u8 omap1_dma_irq[OMAP_LOGICAL_DMA_CH_COUNT] = {
INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3,
INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7,
INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10,
INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13,
INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD
};
#define REVISIT_24XX() printk(KERN_ERR "FIXME: no %s on 24xx\n", \
__FUNCTION__);
#ifdef CONFIG_ARCH_OMAP15XX
/* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */
int omap_dma_in_1510_mode(void)
{
return enable_1510_mode;
}
#else
#define omap_dma_in_1510_mode() 0
#endif
#ifdef CONFIG_ARCH_OMAP1
static inline int get_gdma_dev(int req)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
return ((omap_readl(reg) >> shift) & 0x3f) + 1;
}
static inline void set_gdma_dev(int req, int dev)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
u32 l;
l = omap_readl(reg);
l &= ~(0x3f << shift);
l |= (dev - 1) << shift;
omap_writel(l, reg);
}
#else
#define set_gdma_dev(req, dev) do {} while (0)
#endif
static void clear_lch_regs(int lch)
{
int i;
u32 lch_base = OMAP_DMA_BASE + lch * 0x40;
for (i = 0; i < 0x2c; i += 2)
omap_writew(0, lch_base + i);
}
void omap_set_dma_priority(int lch, int dst_port, int priority)
{
unsigned long reg;
u32 l;
if (cpu_class_is_omap1()) {
switch (dst_port) {
case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */
reg = OMAP_TC_OCPT1_PRIOR;
break;
case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */
reg = OMAP_TC_OCPT2_PRIOR;
break;
case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */
reg = OMAP_TC_EMIFF_PRIOR;
break;
case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */
reg = OMAP_TC_EMIFS_PRIOR;
break;
default:
BUG();
return;
}
l = omap_readl(reg);
l &= ~(0xf << 8);
l |= (priority & 0xf) << 8;
omap_writel(l, reg);
}
if (cpu_is_omap24xx()) {
if (priority)
OMAP_DMA_CCR_REG(lch) |= (1 << 6);
else
OMAP_DMA_CCR_REG(lch) &= ~(1 << 6);
}
}
void omap_set_dma_transfer_params(int lch, int data_type, int elem_count,
int frame_count, int sync_mode,
int dma_trigger, int src_or_dst_synch)
{
OMAP_DMA_CSDP_REG(lch) &= ~0x03;
OMAP_DMA_CSDP_REG(lch) |= data_type;
if (cpu_class_is_omap1()) {
OMAP_DMA_CCR_REG(lch) &= ~(1 << 5);
if (sync_mode == OMAP_DMA_SYNC_FRAME)
OMAP_DMA_CCR_REG(lch) |= 1 << 5;
OMAP1_DMA_CCR2_REG(lch) &= ~(1 << 2);
if (sync_mode == OMAP_DMA_SYNC_BLOCK)
OMAP1_DMA_CCR2_REG(lch) |= 1 << 2;
}
if (cpu_is_omap24xx() && dma_trigger) {
u32 val = OMAP_DMA_CCR_REG(lch);
val &= ~(3 << 19);
if (dma_trigger > 63)
val |= 1 << 20;
if (dma_trigger > 31)
val |= 1 << 19;
val &= ~(0x1f);
val |= (dma_trigger & 0x1f);
if (sync_mode & OMAP_DMA_SYNC_FRAME)
val |= 1 << 5;
else
val &= ~(1 << 5);
if (sync_mode & OMAP_DMA_SYNC_BLOCK)
val |= 1 << 18;
else
val &= ~(1 << 18);
if (src_or_dst_synch)
val |= 1 << 24; /* source synch */
else
val &= ~(1 << 24); /* dest synch */
OMAP_DMA_CCR_REG(lch) = val;
}
OMAP_DMA_CEN_REG(lch) = elem_count;
OMAP_DMA_CFN_REG(lch) = frame_count;
}
void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color)
{
u16 w;
BUG_ON(omap_dma_in_1510_mode());
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
w = OMAP1_DMA_CCR2_REG(lch) & ~0x03;
switch (mode) {
case OMAP_DMA_CONSTANT_FILL:
w |= 0x01;
break;
case OMAP_DMA_TRANSPARENT_COPY:
w |= 0x02;
break;
case OMAP_DMA_COLOR_DIS:
break;
default:
BUG();
}
OMAP1_DMA_CCR2_REG(lch) = w;
w = OMAP1_DMA_LCH_CTRL_REG(lch) & ~0x0f;
/* Default is channel type 2D */
if (mode) {
OMAP1_DMA_COLOR_L_REG(lch) = (u16)color;
OMAP1_DMA_COLOR_U_REG(lch) = (u16)(color >> 16);
w |= 1; /* Channel type G */
}
OMAP1_DMA_LCH_CTRL_REG(lch) = w;
}
void omap_set_dma_write_mode(int lch, enum omap_dma_write_mode mode)
{
if (cpu_is_omap24xx()) {
OMAP_DMA_CSDP_REG(lch) &= ~(0x3 << 16);
OMAP_DMA_CSDP_REG(lch) |= (mode << 16);
}
}
/* Note that src_port is only for omap1 */
void omap_set_dma_src_params(int lch, int src_port, int src_amode,
unsigned long src_start,
int src_ei, int src_fi)
{
if (cpu_class_is_omap1()) {
OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 2);
OMAP_DMA_CSDP_REG(lch) |= src_port << 2;
}
OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 12);
OMAP_DMA_CCR_REG(lch) |= src_amode << 12;
if (cpu_class_is_omap1()) {
OMAP1_DMA_CSSA_U_REG(lch) = src_start >> 16;
OMAP1_DMA_CSSA_L_REG(lch) = src_start;
}
if (cpu_is_omap24xx())
OMAP2_DMA_CSSA_REG(lch) = src_start;
OMAP_DMA_CSEI_REG(lch) = src_ei;
OMAP_DMA_CSFI_REG(lch) = src_fi;
}
void omap_set_dma_params(int lch, struct omap_dma_channel_params * params)
{
omap_set_dma_transfer_params(lch, params->data_type,
params->elem_count, params->frame_count,
params->sync_mode, params->trigger,
params->src_or_dst_synch);
omap_set_dma_src_params(lch, params->src_port,
params->src_amode, params->src_start,
params->src_ei, params->src_fi);
omap_set_dma_dest_params(lch, params->dst_port,
params->dst_amode, params->dst_start,
params->dst_ei, params->dst_fi);
}
void omap_set_dma_src_index(int lch, int eidx, int fidx)
{
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
OMAP_DMA_CSEI_REG(lch) = eidx;
OMAP_DMA_CSFI_REG(lch) = fidx;
}
void omap_set_dma_src_data_pack(int lch, int enable)
{
OMAP_DMA_CSDP_REG(lch) &= ~(1 << 6);
if (enable)
OMAP_DMA_CSDP_REG(lch) |= (1 << 6);
}
void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 7);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_is_omap24xx())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_is_omap24xx()) {
burst = 0x2;
break;
}
/* not supported by current hardware on OMAP1
* w |= (0x03 << 7);
* fall through
*/
case OMAP_DMA_DATA_BURST_16:
if (cpu_is_omap24xx()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
BUG();
}
OMAP_DMA_CSDP_REG(lch) |= (burst << 7);
}
/* Note that dest_port is only for OMAP1 */
void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode,
unsigned long dest_start,
int dst_ei, int dst_fi)
{
if (cpu_class_is_omap1()) {
OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 9);
OMAP_DMA_CSDP_REG(lch) |= dest_port << 9;
}
OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 14);
OMAP_DMA_CCR_REG(lch) |= dest_amode << 14;
if (cpu_class_is_omap1()) {
OMAP1_DMA_CDSA_U_REG(lch) = dest_start >> 16;
OMAP1_DMA_CDSA_L_REG(lch) = dest_start;
}
if (cpu_is_omap24xx())
OMAP2_DMA_CDSA_REG(lch) = dest_start;
OMAP_DMA_CDEI_REG(lch) = dst_ei;
OMAP_DMA_CDFI_REG(lch) = dst_fi;
}
void omap_set_dma_dest_index(int lch, int eidx, int fidx)
{
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
OMAP_DMA_CDEI_REG(lch) = eidx;
OMAP_DMA_CDFI_REG(lch) = fidx;
}
void omap_set_dma_dest_data_pack(int lch, int enable)
{
OMAP_DMA_CSDP_REG(lch) &= ~(1 << 13);
if (enable)
OMAP_DMA_CSDP_REG(lch) |= 1 << 13;
}
void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 14);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_is_omap24xx())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_is_omap24xx())
burst = 0x2;
else
burst = 0x3;
break;
case OMAP_DMA_DATA_BURST_16:
if (cpu_is_omap24xx()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
printk(KERN_ERR "Invalid DMA burst mode\n");
BUG();
return;
}
OMAP_DMA_CSDP_REG(lch) |= (burst << 14);
}
static inline void omap_enable_channel_irq(int lch)
{
u32 status;
/* Clear CSR */
if (cpu_class_is_omap1())
status = OMAP_DMA_CSR_REG(lch);
else if (cpu_is_omap24xx())
OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK;
/* Enable some nice interrupts. */
OMAP_DMA_CICR_REG(lch) = dma_chan[lch].enabled_irqs;
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
static void omap_disable_channel_irq(int lch)
{
if (cpu_is_omap24xx())
OMAP_DMA_CICR_REG(lch) = 0;
}
void omap_enable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs |= bits;
}
void omap_disable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs &= ~bits;
}
static inline void enable_lnk(int lch)
{
if (cpu_class_is_omap1())
OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 14);
/* Set the ENABLE_LNK bits */
if (dma_chan[lch].next_lch != -1)
OMAP_DMA_CLNK_CTRL_REG(lch) =
dma_chan[lch].next_lch | (1 << 15);
}
static inline void disable_lnk(int lch)
{
/* Disable interrupts */
if (cpu_class_is_omap1()) {
OMAP_DMA_CICR_REG(lch) = 0;
/* Set the STOP_LNK bit */
OMAP_DMA_CLNK_CTRL_REG(lch) |= 1 << 14;
}
if (cpu_is_omap24xx()) {
omap_disable_channel_irq(lch);
/* Clear the ENABLE_LNK bit */
OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 15);
}
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
static inline void omap2_enable_irq_lch(int lch)
{
u32 val;
if (!cpu_is_omap24xx())
return;
val = omap_readl(OMAP_DMA4_IRQENABLE_L0);
val |= 1 << lch;
omap_writel(val, OMAP_DMA4_IRQENABLE_L0);
}
int omap_request_dma(int dev_id, const char *dev_name,
void (* callback)(int lch, u16 ch_status, void *data),
void *data, int *dma_ch_out)
{
int ch, free_ch = -1;
unsigned long flags;
struct omap_dma_lch *chan;
spin_lock_irqsave(&dma_chan_lock, flags);
for (ch = 0; ch < dma_chan_count; ch++) {
if (free_ch == -1 && dma_chan[ch].dev_id == -1) {
free_ch = ch;
if (dev_id == 0)
break;
}
}
if (free_ch == -1) {
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EBUSY;
}
chan = dma_chan + free_ch;
chan->dev_id = dev_id;
if (cpu_class_is_omap1())
clear_lch_regs(free_ch);
if (cpu_is_omap24xx())
omap_clear_dma(free_ch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
chan->dev_name = dev_name;
chan->callback = callback;
chan->data = data;
chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
if (cpu_class_is_omap1())
chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ;
else if (cpu_is_omap24xx())
chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ |
OMAP2_DMA_TRANS_ERR_IRQ;
if (cpu_is_omap16xx()) {
/* If the sync device is set, configure it dynamically. */
if (dev_id != 0) {
set_gdma_dev(free_ch + 1, dev_id);
dev_id = free_ch + 1;
}
/* Disable the 1510 compatibility mode and set the sync device
* id. */
OMAP_DMA_CCR_REG(free_ch) = dev_id | (1 << 10);
} else if (cpu_is_omap730() || cpu_is_omap15xx()) {
OMAP_DMA_CCR_REG(free_ch) = dev_id;
}
if (cpu_is_omap24xx()) {
omap2_enable_irq_lch(free_ch);
omap_enable_channel_irq(free_ch);
/* Clear the CSR register and IRQ status register */
OMAP_DMA_CSR_REG(free_ch) = OMAP2_DMA_CSR_CLEAR_MASK;
omap_writel(~0x0, OMAP_DMA4_IRQSTATUS_L0);
}
*dma_ch_out = free_ch;
return 0;
}
void omap_free_dma(int lch)
{
unsigned long flags;
spin_lock_irqsave(&dma_chan_lock, flags);
if (dma_chan[lch].dev_id == -1) {
printk("omap_dma: trying to free nonallocated DMA channel %d\n",
lch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
return;
}
dma_chan[lch].dev_id = -1;
dma_chan[lch].next_lch = -1;
dma_chan[lch].callback = NULL;
spin_unlock_irqrestore(&dma_chan_lock, flags);
if (cpu_class_is_omap1()) {
/* Disable all DMA interrupts for the channel. */
OMAP_DMA_CICR_REG(lch) = 0;
/* Make sure the DMA transfer is stopped. */
OMAP_DMA_CCR_REG(lch) = 0;
}
if (cpu_is_omap24xx()) {
u32 val;
/* Disable interrupts */
val = omap_readl(OMAP_DMA4_IRQENABLE_L0);
val &= ~(1 << lch);
omap_writel(val, OMAP_DMA4_IRQENABLE_L0);
/* Clear the CSR register and IRQ status register */
OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
val |= 1 << lch;
omap_writel(val, OMAP_DMA4_IRQSTATUS_L0);
/* Disable all DMA interrupts for the channel. */
OMAP_DMA_CICR_REG(lch) = 0;
/* Make sure the DMA transfer is stopped. */
OMAP_DMA_CCR_REG(lch) = 0;
omap_clear_dma(lch);
}
}
/*
* Clears any DMA state so the DMA engine is ready to restart with new buffers
* through omap_start_dma(). Any buffers in flight are discarded.
*/
void omap_clear_dma(int lch)
{
unsigned long flags;
local_irq_save(flags);
if (cpu_class_is_omap1()) {
int status;
OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN;
/* Clear pending interrupts */
status = OMAP_DMA_CSR_REG(lch);
}
if (cpu_is_omap24xx()) {
int i;
u32 lch_base = OMAP24XX_DMA_BASE + lch * 0x60 + 0x80;
for (i = 0; i < 0x44; i += 4)
omap_writel(0, lch_base + i);
}
local_irq_restore(flags);
}
void omap_start_dma(int lch)
{
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
dma_chan_link_map[lch] = 1;
/* Set the link register of the first channel */
enable_lnk(lch);
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
cur_lch = dma_chan[lch].next_lch;
do {
next_lch = dma_chan[cur_lch].next_lch;
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
enable_lnk(cur_lch);
omap_enable_channel_irq(cur_lch);
cur_lch = next_lch;
} while (next_lch != -1);
} else if (cpu_is_omap24xx()) {
/* Errata: Need to write lch even if not using chaining */
OMAP_DMA_CLNK_CTRL_REG(lch) = lch;
}
omap_enable_channel_irq(lch);
/* Errata: On ES2.0 BUFFERING disable must be set.
* This will always fail on ES1.0 */
if (cpu_is_omap24xx()) {
OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN;
}
OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN;
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
void omap_stop_dma(int lch)
{
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch = lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
do {
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
disable_lnk(cur_lch);
next_lch = dma_chan[cur_lch].next_lch;
cur_lch = next_lch;
} while (next_lch != -1);
return;
}
/* Disable all interrupts on the channel */
if (cpu_class_is_omap1())
OMAP_DMA_CICR_REG(lch) = 0;
OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN;
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
/*
* Allows changing the DMA callback function or data. This may be needed if
* the driver shares a single DMA channel for multiple dma triggers.
*/
int omap_set_dma_callback(int lch,
void (* callback)(int lch, u16 ch_status, void *data),
void *data)
{
unsigned long flags;
if (lch < 0)
return -ENODEV;
spin_lock_irqsave(&dma_chan_lock, flags);
if (dma_chan[lch].dev_id == -1) {
printk(KERN_ERR "DMA callback for not set for free channel\n");
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EINVAL;
}
dma_chan[lch].callback = callback;
dma_chan[lch].data = data;
spin_unlock_irqrestore(&dma_chan_lock, flags);
return 0;
}
/*
* Returns current physical source address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CSSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_src_pos(int lch)
{
dma_addr_t offset;
if (cpu_class_is_omap1())
offset = (dma_addr_t) (OMAP1_DMA_CSSA_L_REG(lch) |
(OMAP1_DMA_CSSA_U_REG(lch) << 16));
if (cpu_is_omap24xx())
offset = OMAP_DMA_CSAC_REG(lch);
return offset;
}
/*
* Returns current physical destination address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CDSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_dst_pos(int lch)
{
dma_addr_t offset;
if (cpu_class_is_omap1())
offset = (dma_addr_t) (OMAP1_DMA_CDSA_L_REG(lch) |
(OMAP1_DMA_CDSA_U_REG(lch) << 16));
if (cpu_is_omap24xx())
offset = OMAP2_DMA_CDSA_REG(lch);
return offset;
}
/*
* Returns current source transfer counting for the given DMA channel.
* Can be used to monitor the progress of a transfer inside a block.
* It must be called with disabled interrupts.
*/
int omap_get_dma_src_addr_counter(int lch)
{
return (dma_addr_t) OMAP_DMA_CSAC_REG(lch);
}
int omap_dma_running(void)
{
int lch;
/* Check if LCD DMA is running */
if (cpu_is_omap16xx())
if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN)
return 1;
for (lch = 0; lch < dma_chan_count; lch++)
if (OMAP_DMA_CCR_REG(lch) & OMAP_DMA_CCR_EN)
return 1;
return 0;
}
/*
* lch_queue DMA will start right after lch_head one is finished.
* For this DMA link to start, you still need to start (see omap_start_dma)
* the first one. That will fire up the entire queue.
*/
void omap_dma_link_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if ((dma_chan[lch_head].dev_id == -1) ||
(dma_chan[lch_queue].dev_id == -1)) {
printk(KERN_ERR "omap_dma: trying to link "
"non requested channels\n");
dump_stack();
}
dma_chan[lch_head].next_lch = lch_queue;
}
/*
* Once the DMA queue is stopped, we can destroy it.
*/
void omap_dma_unlink_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if (dma_chan[lch_head].next_lch != lch_queue ||
dma_chan[lch_head].next_lch == -1) {
printk(KERN_ERR "omap_dma: trying to unlink "
"non linked channels\n");
dump_stack();
}
if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) ||
(dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) {
printk(KERN_ERR "omap_dma: You need to stop the DMA channels "
"before unlinking\n");
dump_stack();
}
dma_chan[lch_head].next_lch = -1;
}
/*----------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_OMAP1
static int omap1_dma_handle_ch(int ch)
{
u16 csr;
if (enable_1510_mode && ch >= 6) {
csr = dma_chan[ch].saved_csr;
dma_chan[ch].saved_csr = 0;
} else
csr = OMAP_DMA_CSR_REG(ch);
if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) {
dma_chan[ch + 6].saved_csr = csr >> 7;
csr &= 0x7f;
}
if ((csr & 0x3f) == 0)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1)) {
printk(KERN_WARNING "Spurious interrupt from DMA channel "
"%d (CSR %04x)\n", ch, csr);
return 0;
}
if (unlikely(csr & OMAP1_DMA_TOUT_IRQ))
printk(KERN_WARNING "DMA timeout with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(csr & OMAP_DMA_DROP_IRQ))
printk(KERN_WARNING "DMA synchronization event drop occurred "
"with device %d\n", dma_chan[ch].dev_id);
if (likely(csr & OMAP_DMA_BLOCK_IRQ))
dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, csr, dma_chan[ch].data);
return 1;
}
static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id)
{
int ch = ((int) dev_id) - 1;
int handled = 0;
for (;;) {
int handled_now = 0;
handled_now += omap1_dma_handle_ch(ch);
if (enable_1510_mode && dma_chan[ch + 6].saved_csr)
handled_now += omap1_dma_handle_ch(ch + 6);
if (!handled_now)
break;
handled += handled_now;
}
return handled ? IRQ_HANDLED : IRQ_NONE;
}
#else
#define omap1_dma_irq_handler NULL
#endif
#ifdef CONFIG_ARCH_OMAP2
static int omap2_dma_handle_ch(int ch)
{
u32 status = OMAP_DMA_CSR_REG(ch);
u32 val;
if (!status)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1))
return 0;
if (unlikely(status & OMAP_DMA_DROP_IRQ))
printk(KERN_INFO
"DMA synchronization event drop occurred with device "
"%d\n", dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ))
printk(KERN_INFO "DMA transaction error with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ))
printk(KERN_INFO "DMA secure error with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ))
printk(KERN_INFO "DMA misaligned error with device %d\n",
dma_chan[ch].dev_id);
OMAP_DMA_CSR_REG(ch) = OMAP2_DMA_CSR_CLEAR_MASK;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
/* ch in this function is from 0-31 while in register it is 1-32 */
val = 1 << (ch);
omap_writel(val, OMAP_DMA4_IRQSTATUS_L0);
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, status, dma_chan[ch].data);
return 0;
}
/* STATUS register count is from 1-32 while our is 0-31 */
static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id)
{
u32 val;
int i;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
for (i = 1; i <= OMAP_LOGICAL_DMA_CH_COUNT; i++) {
int active = val & (1 << (i - 1));
if (active)
omap2_dma_handle_ch(i - 1);
}
return IRQ_HANDLED;
}
static struct irqaction omap24xx_dma_irq = {
.name = "DMA",
.handler = omap2_dma_irq_handler,
.flags = IRQF_DISABLED
};
#else
static struct irqaction omap24xx_dma_irq;
#endif
/*----------------------------------------------------------------------------*/
static struct lcd_dma_info {
spinlock_t lock;
int reserved;
void (* callback)(u16 status, void *data);
void *cb_data;
int active;
unsigned long addr, size;
int rotate, data_type, xres, yres;
int vxres;
int mirror;
int xscale, yscale;
int ext_ctrl;
int src_port;
int single_transfer;
} lcd_dma;
void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres,
int data_type)
{
lcd_dma.addr = addr;
lcd_dma.data_type = data_type;
lcd_dma.xres = fb_xres;
lcd_dma.yres = fb_yres;
}
void omap_set_lcd_dma_src_port(int port)
{
lcd_dma.src_port = port;
}
void omap_set_lcd_dma_ext_controller(int external)
{
lcd_dma.ext_ctrl = external;
}
void omap_set_lcd_dma_single_transfer(int single)
{
lcd_dma.single_transfer = single;
}
void omap_set_lcd_dma_b1_rotation(int rotate)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n");
BUG();
return;
}
lcd_dma.rotate = rotate;
}
void omap_set_lcd_dma_b1_mirror(int mirror)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n");
BUG();
}
lcd_dma.mirror = mirror;
}
void omap_set_lcd_dma_b1_vxres(unsigned long vxres)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA virtual resulotion is not supported "
"in 1510 mode\n");
BUG();
}
lcd_dma.vxres = vxres;
}
void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA scale is not supported in 1510 mode\n");
BUG();
}
lcd_dma.xscale = xscale;
lcd_dma.yscale = yscale;
}
static void set_b1_regs(void)
{
unsigned long top, bottom;
int es;
u16 w;
unsigned long en, fn;
long ei, fi;
unsigned long vxres;
unsigned int xscale, yscale;
switch (lcd_dma.data_type) {
case OMAP_DMA_DATA_TYPE_S8:
es = 1;
break;
case OMAP_DMA_DATA_TYPE_S16:
es = 2;
break;
case OMAP_DMA_DATA_TYPE_S32:
es = 4;
break;
default:
BUG();
return;
}
vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres;
xscale = lcd_dma.xscale ? lcd_dma.xscale : 1;
yscale = lcd_dma.yscale ? lcd_dma.yscale : 1;
BUG_ON(vxres < lcd_dma.xres);
#define PIXADDR(x,y) (lcd_dma.addr + ((y) * vxres * yscale + (x) * xscale) * es)
#define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1)
switch (lcd_dma.rotate) {
case 0:
if (!lcd_dma.mirror) {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
/* 1510 DMA requires the bottom address to be 2 more
* than the actual last memory access location. */
if (omap_dma_in_1510_mode() &&
lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32)
bottom += 2;
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 90:
if (!lcd_dma.mirror) {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
case 180:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0);
} else {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 270:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0);
} else {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
default:
BUG();
return; /* Supress warning about uninitialized vars */
}
if (omap_dma_in_1510_mode()) {
omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U);
omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L);
omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U);
omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L);
return;
}
/* 1610 regs */
omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U);
omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L);
omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U);
omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L);
omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1);
omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1);
w = omap_readw(OMAP1610_DMA_LCD_CSDP);
w &= ~0x03;
w |= lcd_dma.data_type;
omap_writew(w, OMAP1610_DMA_LCD_CSDP);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
/* Always set the source port as SDRAM for now*/
w &= ~(0x03 << 6);
if (lcd_dma.callback != NULL)
w |= 1 << 1; /* Block interrupt enable */
else
w &= ~(1 << 1);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
if (!(lcd_dma.rotate || lcd_dma.mirror ||
lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale))
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* Set the double-indexed addressing mode */
w |= (0x03 << 12);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1);
omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U);
omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L);
}
static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id)
{
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
if (unlikely(!(w & (1 << 3)))) {
printk(KERN_WARNING "Spurious LCD DMA IRQ\n");
return IRQ_NONE;
}
/* Ack the IRQ */
w |= (1 << 3);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 0;
if (lcd_dma.callback != NULL)
lcd_dma.callback(w, lcd_dma.cb_data);
return IRQ_HANDLED;
}
int omap_request_lcd_dma(void (* callback)(u16 status, void *data),
void *data)
{
spin_lock_irq(&lcd_dma.lock);
if (lcd_dma.reserved) {
spin_unlock_irq(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA channel already reserved\n");
BUG();
return -EBUSY;
}
lcd_dma.reserved = 1;
spin_unlock_irq(&lcd_dma.lock);
lcd_dma.callback = callback;
lcd_dma.cb_data = data;
lcd_dma.active = 0;
lcd_dma.single_transfer = 0;
lcd_dma.rotate = 0;
lcd_dma.vxres = 0;
lcd_dma.mirror = 0;
lcd_dma.xscale = 0;
lcd_dma.yscale = 0;
lcd_dma.ext_ctrl = 0;
lcd_dma.src_port = 0;
return 0;
}
void omap_free_lcd_dma(void)
{
spin_lock(&lcd_dma.lock);
if (!lcd_dma.reserved) {
spin_unlock(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA is not reserved\n");
BUG();
return;
}
if (!enable_1510_mode)
omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1,
OMAP1610_DMA_LCD_CCR);
lcd_dma.reserved = 0;
spin_unlock(&lcd_dma.lock);
}
void omap_enable_lcd_dma(void)
{
u16 w;
/* Set the Enable bit only if an external controller is
* connected. Otherwise the OMAP internal controller will
* start the transfer when it gets enabled.
*/
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w |= 1 << 8;
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 1;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w |= 1 << 7;
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
void omap_setup_lcd_dma(void)
{
BUG_ON(lcd_dma.active);
if (!enable_1510_mode) {
/* Set some reasonable defaults */
omap_writew(0x5440, OMAP1610_DMA_LCD_CCR);
omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP);
omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL);
}
set_b1_regs();
if (!enable_1510_mode) {
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* If DMA was already active set the end_prog bit to have
* the programmed register set loaded into the active
* register set.
*/
w |= 1 << 11; /* End_prog */
if (!lcd_dma.single_transfer)
w |= (3 << 8); /* Auto_init, repeat */
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
}
void omap_stop_lcd_dma(void)
{
u16 w;
lcd_dma.active = 0;
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w &= ~(1 << 7);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
int omap_lcd_dma_ext_running(void)
{
return lcd_dma.ext_ctrl && lcd_dma.active;
}
/*----------------------------------------------------------------------------*/
static int __init omap_init_dma(void)
{
int ch, r;
if (cpu_is_omap15xx()) {
printk(KERN_INFO "DMA support for OMAP15xx initialized\n");
dma_chan_count = 9;
enable_1510_mode = 1;
} else if (cpu_is_omap16xx() || cpu_is_omap730()) {
printk(KERN_INFO "OMAP DMA hardware version %d\n",
omap_readw(OMAP_DMA_HW_ID));
printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n",
(omap_readw(OMAP_DMA_CAPS_0_U) << 16) |
omap_readw(OMAP_DMA_CAPS_0_L),
(omap_readw(OMAP_DMA_CAPS_1_U) << 16) |
omap_readw(OMAP_DMA_CAPS_1_L),
omap_readw(OMAP_DMA_CAPS_2), omap_readw(OMAP_DMA_CAPS_3),
omap_readw(OMAP_DMA_CAPS_4));
if (!enable_1510_mode) {
u16 w;
/* Disable OMAP 3.0/3.1 compatibility mode. */
w = omap_readw(OMAP_DMA_GSCR);
w |= 1 << 3;
omap_writew(w, OMAP_DMA_GSCR);
dma_chan_count = 16;
} else
dma_chan_count = 9;
if (cpu_is_omap16xx()) {
u16 w;
/* this would prevent OMAP sleep */
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
} else if (cpu_is_omap24xx()) {
u8 revision = omap_readb(OMAP_DMA4_REVISION);
printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n",
revision >> 4, revision & 0xf);
dma_chan_count = OMAP_LOGICAL_DMA_CH_COUNT;
} else {
dma_chan_count = 0;
return 0;
}
memset(&lcd_dma, 0, sizeof(lcd_dma));
spin_lock_init(&lcd_dma.lock);
spin_lock_init(&dma_chan_lock);
memset(&dma_chan, 0, sizeof(dma_chan));
for (ch = 0; ch < dma_chan_count; ch++) {
omap_clear_dma(ch);
dma_chan[ch].dev_id = -1;
dma_chan[ch].next_lch = -1;
if (ch >= 6 && enable_1510_mode)
continue;
if (cpu_class_is_omap1()) {
/* request_irq() doesn't like dev_id (ie. ch) being
* zero, so we have to kludge around this. */
r = request_irq(omap1_dma_irq[ch],
omap1_dma_irq_handler, 0, "DMA",
(void *) (ch + 1));
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ %d "
"for DMA (error %d)\n",
omap1_dma_irq[ch], r);
for (i = 0; i < ch; i++)
free_irq(omap1_dma_irq[i],
(void *) (i + 1));
return r;
}
}
}
if (cpu_is_omap24xx())
setup_irq(INT_24XX_SDMA_IRQ0, &omap24xx_dma_irq);
/* FIXME: Update LCD DMA to work on 24xx */
if (cpu_class_is_omap1()) {
r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0,
"LCD DMA", NULL);
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ for LCD DMA "
"(error %d)\n", r);
for (i = 0; i < dma_chan_count; i++)
free_irq(omap1_dma_irq[i], (void *) (i + 1));
return r;
}
}
return 0;
}
arch_initcall(omap_init_dma);
EXPORT_SYMBOL(omap_get_dma_src_pos);
EXPORT_SYMBOL(omap_get_dma_dst_pos);
EXPORT_SYMBOL(omap_get_dma_src_addr_counter);
EXPORT_SYMBOL(omap_clear_dma);
EXPORT_SYMBOL(omap_set_dma_priority);
EXPORT_SYMBOL(omap_request_dma);
EXPORT_SYMBOL(omap_free_dma);
EXPORT_SYMBOL(omap_start_dma);
EXPORT_SYMBOL(omap_stop_dma);
EXPORT_SYMBOL(omap_set_dma_callback);
EXPORT_SYMBOL(omap_enable_dma_irq);
EXPORT_SYMBOL(omap_disable_dma_irq);
EXPORT_SYMBOL(omap_set_dma_transfer_params);
EXPORT_SYMBOL(omap_set_dma_color_mode);
EXPORT_SYMBOL(omap_set_dma_write_mode);
EXPORT_SYMBOL(omap_set_dma_src_params);
EXPORT_SYMBOL(omap_set_dma_src_index);
EXPORT_SYMBOL(omap_set_dma_src_data_pack);
EXPORT_SYMBOL(omap_set_dma_src_burst_mode);
EXPORT_SYMBOL(omap_set_dma_dest_params);
EXPORT_SYMBOL(omap_set_dma_dest_index);
EXPORT_SYMBOL(omap_set_dma_dest_data_pack);
EXPORT_SYMBOL(omap_set_dma_dest_burst_mode);
EXPORT_SYMBOL(omap_set_dma_params);
EXPORT_SYMBOL(omap_dma_link_lch);
EXPORT_SYMBOL(omap_dma_unlink_lch);
EXPORT_SYMBOL(omap_request_lcd_dma);
EXPORT_SYMBOL(omap_free_lcd_dma);
EXPORT_SYMBOL(omap_enable_lcd_dma);
EXPORT_SYMBOL(omap_setup_lcd_dma);
EXPORT_SYMBOL(omap_stop_lcd_dma);
EXPORT_SYMBOL(omap_lcd_dma_ext_running);
EXPORT_SYMBOL(omap_set_lcd_dma_b1);
EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer);
EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);