linux-stable-rt/include/asm-arm/io.h

287 lines
9.8 KiB
C

/*
* linux/include/asm-arm/io.h
*
* Copyright (C) 1996-2000 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Modifications:
* 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
* constant addresses and variable addresses.
* 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
* specific IO header files.
* 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
* 04-Apr-1999 PJB Added check_signature.
* 12-Dec-1999 RMK More cleanups
* 18-Jun-2000 RMK Removed virt_to_* and friends definitions
* 05-Oct-2004 BJD Moved memory string functions to use void __iomem
*/
#ifndef __ASM_ARM_IO_H
#define __ASM_ARM_IO_H
#ifdef __KERNEL__
#include <linux/types.h>
#include <asm/byteorder.h>
#include <asm/memory.h>
#include <asm/arch/hardware.h>
/*
* ISA I/O bus memory addresses are 1:1 with the physical address.
*/
#define isa_virt_to_bus virt_to_phys
#define isa_page_to_bus page_to_phys
#define isa_bus_to_virt phys_to_virt
/*
* Generic IO read/write. These perform native-endian accesses. Note
* that some architectures will want to re-define __raw_{read,write}w.
*/
extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
extern void __raw_readsb(void __iomem *addr, void *data, int bytelen);
extern void __raw_readsw(void __iomem *addr, void *data, int wordlen);
extern void __raw_readsl(void __iomem *addr, void *data, int longlen);
#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a) = (v))
#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))
#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a) = (v))
#define __raw_readb(a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a))
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
#define __raw_readl(a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a))
/*
* Bad read/write accesses...
*/
extern void __readwrite_bug(const char *fn);
/*
* Now, pick up the machine-defined IO definitions
*/
#include <asm/arch/io.h>
#ifdef __io_pci
#warning machine class uses buggy __io_pci
#endif
#if defined(__arch_putb) || defined(__arch_putw) || defined(__arch_putl) || \
defined(__arch_getb) || defined(__arch_getw) || defined(__arch_getl)
#warning machine class uses old __arch_putw or __arch_getw
#endif
/*
* IO port access primitives
* -------------------------
*
* The ARM doesn't have special IO access instructions; all IO is memory
* mapped. Note that these are defined to perform little endian accesses
* only. Their primary purpose is to access PCI and ISA peripherals.
*
* Note that for a big endian machine, this implies that the following
* big endian mode connectivity is in place, as described by numerious
* ARM documents:
*
* PCI: D0-D7 D8-D15 D16-D23 D24-D31
* ARM: D24-D31 D16-D23 D8-D15 D0-D7
*
* The machine specific io.h include defines __io to translate an "IO"
* address to a memory address.
*
* Note that we prevent GCC re-ordering or caching values in expressions
* by introducing sequence points into the in*() definitions. Note that
* __raw_* do not guarantee this behaviour.
*
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
*/
#ifdef __io
#define outb(v,p) __raw_writeb(v,__io(p))
#define outw(v,p) __raw_writew(cpu_to_le16(v),__io(p))
#define outl(v,p) __raw_writel(cpu_to_le32(v),__io(p))
#define inb(p) ({ unsigned int __v = __raw_readb(__io(p)); __v; })
#define inw(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(__io(p))); __v; })
#define inl(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(__io(p))); __v; })
#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
#define insb(p,d,l) __raw_readsb(__io(p),d,l)
#define insw(p,d,l) __raw_readsw(__io(p),d,l)
#define insl(p,d,l) __raw_readsl(__io(p),d,l)
#endif
#define outb_p(val,port) outb((val),(port))
#define outw_p(val,port) outw((val),(port))
#define outl_p(val,port) outl((val),(port))
#define inb_p(port) inb((port))
#define inw_p(port) inw((port))
#define inl_p(port) inl((port))
#define outsb_p(port,from,len) outsb(port,from,len)
#define outsw_p(port,from,len) outsw(port,from,len)
#define outsl_p(port,from,len) outsl(port,from,len)
#define insb_p(port,to,len) insb(port,to,len)
#define insw_p(port,to,len) insw(port,to,len)
#define insl_p(port,to,len) insl(port,to,len)
/*
* String version of IO memory access ops:
*/
extern void _memcpy_fromio(void *, void __iomem *, size_t);
extern void _memcpy_toio(void __iomem *, const void *, size_t);
extern void _memset_io(void __iomem *, int, size_t);
#define mmiowb()
/*
* Memory access primitives
* ------------------------
*
* These perform PCI memory accesses via an ioremap region. They don't
* take an address as such, but a cookie.
*
* Again, this are defined to perform little endian accesses. See the
* IO port primitives for more information.
*/
#ifdef __mem_pci
#define readb(c) ({ unsigned int __v = __raw_readb(__mem_pci(c)); __v; })
#define readw(c) ({ unsigned int __v = le16_to_cpu(__raw_readw(__mem_pci(c))); __v; })
#define readl(c) ({ unsigned int __v = le32_to_cpu(__raw_readl(__mem_pci(c))); __v; })
#define readb_relaxed(addr) readb(addr)
#define readw_relaxed(addr) readw(addr)
#define readl_relaxed(addr) readl(addr)
#define readsb(p,d,l) __raw_readsb(__mem_pci(p),d,l)
#define readsw(p,d,l) __raw_readsw(__mem_pci(p),d,l)
#define readsl(p,d,l) __raw_readsl(__mem_pci(p),d,l)
#define writeb(v,c) __raw_writeb(v,__mem_pci(c))
#define writew(v,c) __raw_writew(cpu_to_le16(v),__mem_pci(c))
#define writel(v,c) __raw_writel(cpu_to_le32(v),__mem_pci(c))
#define writesb(p,d,l) __raw_writesb(__mem_pci(p),d,l)
#define writesw(p,d,l) __raw_writesw(__mem_pci(p),d,l)
#define writesl(p,d,l) __raw_writesl(__mem_pci(p),d,l)
#define memset_io(c,v,l) _memset_io(__mem_pci(c),(v),(l))
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),__mem_pci(c),(l))
#define memcpy_toio(c,a,l) _memcpy_toio(__mem_pci(c),(a),(l))
#define eth_io_copy_and_sum(s,c,l,b) \
eth_copy_and_sum((s),__mem_pci(c),(l),(b))
static inline int
check_signature(void __iomem *io_addr, const unsigned char *signature,
int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
#elif !defined(readb)
#define readb(c) (__readwrite_bug("readb"),0)
#define readw(c) (__readwrite_bug("readw"),0)
#define readl(c) (__readwrite_bug("readl"),0)
#define writeb(v,c) __readwrite_bug("writeb")
#define writew(v,c) __readwrite_bug("writew")
#define writel(v,c) __readwrite_bug("writel")
#define eth_io_copy_and_sum(s,c,l,b) __readwrite_bug("eth_io_copy_and_sum")
#define check_signature(io,sig,len) (0)
#endif /* __mem_pci */
/*
* If this architecture has ISA IO, then define the isa_read/isa_write
* macros.
*/
#ifdef __mem_isa
#define isa_readb(addr) __raw_readb(__mem_isa(addr))
#define isa_readw(addr) __raw_readw(__mem_isa(addr))
#define isa_readl(addr) __raw_readl(__mem_isa(addr))
#define isa_writeb(val,addr) __raw_writeb(val,__mem_isa(addr))
#define isa_writew(val,addr) __raw_writew(val,__mem_isa(addr))
#define isa_writel(val,addr) __raw_writel(val,__mem_isa(addr))
#define isa_memset_io(a,b,c) _memset_io(__mem_isa(a),(b),(c))
#define isa_memcpy_fromio(a,b,c) _memcpy_fromio((a),__mem_isa(b),(c))
#define isa_memcpy_toio(a,b,c) _memcpy_toio(__mem_isa((a)),(b),(c))
#define isa_eth_io_copy_and_sum(a,b,c,d) \
eth_copy_and_sum((a),__mem_isa(b),(c),(d))
#else /* __mem_isa */
#define isa_readb(addr) (__readwrite_bug("isa_readb"),0)
#define isa_readw(addr) (__readwrite_bug("isa_readw"),0)
#define isa_readl(addr) (__readwrite_bug("isa_readl"),0)
#define isa_writeb(val,addr) __readwrite_bug("isa_writeb")
#define isa_writew(val,addr) __readwrite_bug("isa_writew")
#define isa_writel(val,addr) __readwrite_bug("isa_writel")
#define isa_memset_io(a,b,c) __readwrite_bug("isa_memset_io")
#define isa_memcpy_fromio(a,b,c) __readwrite_bug("isa_memcpy_fromio")
#define isa_memcpy_toio(a,b,c) __readwrite_bug("isa_memcpy_toio")
#define isa_eth_io_copy_and_sum(a,b,c,d) \
__readwrite_bug("isa_eth_io_copy_and_sum")
#endif /* __mem_isa */
/*
* ioremap and friends.
*
* ioremap takes a PCI memory address, as specified in
* Documentation/IO-mapping.txt.
*/
extern void __iomem * __ioremap(unsigned long, size_t, unsigned long, unsigned long);
extern void __iounmap(void __iomem *addr);
#ifndef __arch_ioremap
#define ioremap(cookie,size) __ioremap(cookie,size,0,1)
#define ioremap_nocache(cookie,size) __ioremap(cookie,size,0,1)
#define ioremap_cached(cookie,size) __ioremap(cookie,size,L_PTE_CACHEABLE,1)
#define iounmap(cookie) __iounmap(cookie)
#else
#define ioremap(cookie,size) __arch_ioremap((cookie),(size),0,1)
#define ioremap_nocache(cookie,size) __arch_ioremap((cookie),(size),0,1)
#define ioremap_cached(cookie,size) __arch_ioremap((cookie),(size),L_PTE_CACHEABLE,1)
#define iounmap(cookie) __arch_iounmap(cookie)
#endif
/*
* can the hardware map this into one segment or not, given no other
* constraints.
*/
#define BIOVEC_MERGEABLE(vec1, vec2) \
((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */
#endif /* __ASM_ARM_IO_H */