linux-stable-rt/arch/mips/kernel/gdb-stub.c

1155 lines
25 KiB
C

/*
* arch/mips/kernel/gdb-stub.c
*
* Originally written by Glenn Engel, Lake Stevens Instrument Division
*
* Contributed by HP Systems
*
* Modified for SPARC by Stu Grossman, Cygnus Support.
*
* Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
* Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
*
* Copyright (C) 1995 Andreas Busse
*
* Copyright (C) 2003 MontaVista Software Inc.
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
*/
/*
* To enable debugger support, two things need to happen. One, a
* call to set_debug_traps() is necessary in order to allow any breakpoints
* or error conditions to be properly intercepted and reported to gdb.
* Two, a breakpoint needs to be generated to begin communication. This
* is most easily accomplished by a call to breakpoint(). Breakpoint()
* simulates a breakpoint by executing a BREAK instruction.
*
*
* The following gdb commands are supported:
*
* command function Return value
*
* g return the value of the CPU registers hex data or ENN
* G set the value of the CPU registers OK or ENN
*
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
*
* c Resume at current address SNN ( signal NN)
* cAA..AA Continue at address AA..AA SNN
*
* s Step one instruction SNN
* sAA..AA Step one instruction from AA..AA SNN
*
* k kill
*
* ? What was the last sigval ? SNN (signal NN)
*
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
* baud rate
*
* All commands and responses are sent with a packet which includes a
* checksum. A packet consists of
*
* $<packet info>#<checksum>.
*
* where
* <packet info> :: <characters representing the command or response>
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
*
* When a packet is received, it is first acknowledged with either '+' or '-'.
* '+' indicates a successful transfer. '-' indicates a failed transfer.
*
* Example:
*
* Host: Reply:
* $m0,10#2a +$00010203040506070809101112131415#42
*
*
* ==============
* MORE EXAMPLES:
* ==============
*
* For reference -- the following are the steps that one
* company took (RidgeRun Inc) to get remote gdb debugging
* going. In this scenario the host machine was a PC and the
* target platform was a Galileo EVB64120A MIPS evaluation
* board.
*
* Step 1:
* First download gdb-5.0.tar.gz from the internet.
* and then build/install the package.
*
* Example:
* $ tar zxf gdb-5.0.tar.gz
* $ cd gdb-5.0
* $ ./configure --target=mips-linux-elf
* $ make
* $ install
* $ which mips-linux-elf-gdb
* /usr/local/bin/mips-linux-elf-gdb
*
* Step 2:
* Configure linux for remote debugging and build it.
*
* Example:
* $ cd ~/linux
* $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
* $ make
*
* Step 3:
* Download the kernel to the remote target and start
* the kernel running. It will promptly halt and wait
* for the host gdb session to connect. It does this
* since the "Kernel Hacking" option has defined
* CONFIG_KGDB which in turn enables your calls
* to:
* set_debug_traps();
* breakpoint();
*
* Step 4:
* Start the gdb session on the host.
*
* Example:
* $ mips-linux-elf-gdb vmlinux
* (gdb) set remotebaud 115200
* (gdb) target remote /dev/ttyS1
* ...at this point you are connected to
* the remote target and can use gdb
* in the normal fasion. Setting
* breakpoints, single stepping,
* printing variables, etc.
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/reboot.h>
#include <asm/asm.h>
#include <asm/cacheflush.h>
#include <asm/mipsregs.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/gdb-stub.h>
#include <asm/inst.h>
#include <asm/smp.h>
/*
* external low-level support routines
*/
extern int putDebugChar(char c); /* write a single character */
extern char getDebugChar(void); /* read and return a single char */
extern void trap_low(void);
/*
* breakpoint and test functions
*/
extern void breakpoint(void);
extern void breakinst(void);
extern void async_breakpoint(void);
extern void async_breakinst(void);
extern void adel(void);
/*
* local prototypes
*/
static void getpacket(char *buffer);
static void putpacket(char *buffer);
static int computeSignal(int tt);
static int hex(unsigned char ch);
static int hexToInt(char **ptr, int *intValue);
static int hexToLong(char **ptr, long *longValue);
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
void handle_exception(struct gdb_regs *regs);
int kgdb_enabled;
/*
* spin locks for smp case
*/
static DEFINE_SPINLOCK(kgdb_lock);
static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
[0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED,
};
/*
* BUFMAX defines the maximum number of characters in inbound/outbound buffers
* at least NUMREGBYTES*2 are needed for register packets
*/
#define BUFMAX 2048
static char input_buffer[BUFMAX];
static char output_buffer[BUFMAX];
static int initialized; /* !0 means we've been initialized */
static int kgdb_started;
static const char hexchars[]="0123456789abcdef";
/* Used to prevent crashes in memory access. Note that they'll crash anyway if
we haven't set up fault handlers yet... */
int kgdb_read_byte(unsigned char *address, unsigned char *dest);
int kgdb_write_byte(unsigned char val, unsigned char *dest);
/*
* Convert ch from a hex digit to an int
*/
static int hex(unsigned char ch)
{
if (ch >= 'a' && ch <= 'f')
return ch-'a'+10;
if (ch >= '0' && ch <= '9')
return ch-'0';
if (ch >= 'A' && ch <= 'F')
return ch-'A'+10;
return -1;
}
/*
* scan for the sequence $<data>#<checksum>
*/
static void getpacket(char *buffer)
{
unsigned char checksum;
unsigned char xmitcsum;
int i;
int count;
unsigned char ch;
do {
/*
* wait around for the start character,
* ignore all other characters
*/
while ((ch = (getDebugChar() & 0x7f)) != '$') ;
checksum = 0;
xmitcsum = -1;
count = 0;
/*
* now, read until a # or end of buffer is found
*/
while (count < BUFMAX) {
ch = getDebugChar();
if (ch == '#')
break;
checksum = checksum + ch;
buffer[count] = ch;
count = count + 1;
}
if (count >= BUFMAX)
continue;
buffer[count] = 0;
if (ch == '#') {
xmitcsum = hex(getDebugChar() & 0x7f) << 4;
xmitcsum |= hex(getDebugChar() & 0x7f);
if (checksum != xmitcsum)
putDebugChar('-'); /* failed checksum */
else {
putDebugChar('+'); /* successful transfer */
/*
* if a sequence char is present,
* reply the sequence ID
*/
if (buffer[2] == ':') {
putDebugChar(buffer[0]);
putDebugChar(buffer[1]);
/*
* remove sequence chars from buffer
*/
count = strlen(buffer);
for (i=3; i <= count; i++)
buffer[i-3] = buffer[i];
}
}
}
}
while (checksum != xmitcsum);
}
/*
* send the packet in buffer.
*/
static void putpacket(char *buffer)
{
unsigned char checksum;
int count;
unsigned char ch;
/*
* $<packet info>#<checksum>.
*/
do {
putDebugChar('$');
checksum = 0;
count = 0;
while ((ch = buffer[count]) != 0) {
if (!(putDebugChar(ch)))
return;
checksum += ch;
count += 1;
}
putDebugChar('#');
putDebugChar(hexchars[checksum >> 4]);
putDebugChar(hexchars[checksum & 0xf]);
}
while ((getDebugChar() & 0x7f) != '+');
}
/*
* Convert the memory pointed to by mem into hex, placing result in buf.
* Return a pointer to the last char put in buf (null), in case of mem fault,
* return 0.
* may_fault is non-zero if we are reading from arbitrary memory, but is currently
* not used.
*/
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
{
unsigned char ch;
while (count-- > 0) {
if (kgdb_read_byte(mem++, &ch) != 0)
return 0;
*buf++ = hexchars[ch >> 4];
*buf++ = hexchars[ch & 0xf];
}
*buf = 0;
return buf;
}
/*
* convert the hex array pointed to by buf into binary to be placed in mem
* return a pointer to the character AFTER the last byte written
* may_fault is non-zero if we are reading from arbitrary memory, but is currently
* not used.
*/
static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
{
int i;
unsigned char ch;
for (i=0; i<count; i++)
{
if (binary) {
ch = *buf++;
if (ch == 0x7d)
ch = 0x20 ^ *buf++;
}
else {
ch = hex(*buf++) << 4;
ch |= hex(*buf++);
}
if (kgdb_write_byte(ch, mem++) != 0)
return 0;
}
return mem;
}
/*
* This table contains the mapping between SPARC hardware trap types, and
* signals, which are primarily what GDB understands. It also indicates
* which hardware traps we need to commandeer when initializing the stub.
*/
static struct hard_trap_info {
unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
unsigned char signo; /* Signal that we map this trap into */
} hard_trap_info[] = {
{ 6, SIGBUS }, /* instruction bus error */
{ 7, SIGBUS }, /* data bus error */
{ 9, SIGTRAP }, /* break */
{ 10, SIGILL }, /* reserved instruction */
/* { 11, SIGILL }, */ /* CPU unusable */
{ 12, SIGFPE }, /* overflow */
{ 13, SIGTRAP }, /* trap */
{ 14, SIGSEGV }, /* virtual instruction cache coherency */
{ 15, SIGFPE }, /* floating point exception */
{ 23, SIGSEGV }, /* watch */
{ 31, SIGSEGV }, /* virtual data cache coherency */
{ 0, 0} /* Must be last */
};
/* Save the normal trap handlers for user-mode traps. */
void *saved_vectors[32];
/*
* Set up exception handlers for tracing and breakpoints
*/
void set_debug_traps(void)
{
struct hard_trap_info *ht;
unsigned long flags;
unsigned char c;
local_irq_save(flags);
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
putDebugChar('+'); /* 'hello world' */
/*
* In case GDB is started before us, ack any packets
* (presumably "$?#xx") sitting there.
*/
while((c = getDebugChar()) != '$');
while((c = getDebugChar()) != '#');
c = getDebugChar(); /* eat first csum byte */
c = getDebugChar(); /* eat second csum byte */
putDebugChar('+'); /* ack it */
initialized = 1;
local_irq_restore(flags);
}
void restore_debug_traps(void)
{
struct hard_trap_info *ht;
unsigned long flags;
local_irq_save(flags);
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
set_except_vector(ht->tt, saved_vectors[ht->tt]);
local_irq_restore(flags);
}
/*
* Convert the MIPS hardware trap type code to a Unix signal number.
*/
static int computeSignal(int tt)
{
struct hard_trap_info *ht;
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
if (ht->tt == tt)
return ht->signo;
return SIGHUP; /* default for things we don't know about */
}
/*
* While we find nice hex chars, build an int.
* Return number of chars processed.
*/
static int hexToInt(char **ptr, int *intValue)
{
int numChars = 0;
int hexValue;
*intValue = 0;
while (**ptr) {
hexValue = hex(**ptr);
if (hexValue < 0)
break;
*intValue = (*intValue << 4) | hexValue;
numChars ++;
(*ptr)++;
}
return (numChars);
}
static int hexToLong(char **ptr, long *longValue)
{
int numChars = 0;
int hexValue;
*longValue = 0;
while (**ptr) {
hexValue = hex(**ptr);
if (hexValue < 0)
break;
*longValue = (*longValue << 4) | hexValue;
numChars ++;
(*ptr)++;
}
return numChars;
}
#if 0
/*
* Print registers (on target console)
* Used only to debug the stub...
*/
void show_gdbregs(struct gdb_regs * regs)
{
/*
* Saved main processor registers
*/
printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
regs->reg0, regs->reg1, regs->reg2, regs->reg3,
regs->reg4, regs->reg5, regs->reg6, regs->reg7);
printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
regs->reg8, regs->reg9, regs->reg10, regs->reg11,
regs->reg12, regs->reg13, regs->reg14, regs->reg15);
printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
regs->reg16, regs->reg17, regs->reg18, regs->reg19,
regs->reg20, regs->reg21, regs->reg22, regs->reg23);
printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
regs->reg24, regs->reg25, regs->reg26, regs->reg27,
regs->reg28, regs->reg29, regs->reg30, regs->reg31);
/*
* Saved cp0 registers
*/
printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n",
regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
}
#endif /* dead code */
/*
* We single-step by setting breakpoints. When an exception
* is handled, we need to restore the instructions hoisted
* when the breakpoints were set.
*
* This is where we save the original instructions.
*/
static struct gdb_bp_save {
unsigned long addr;
unsigned int val;
} step_bp[2];
#define BP 0x0000000d /* break opcode */
/*
* Set breakpoint instructions for single stepping.
*/
static void single_step(struct gdb_regs *regs)
{
union mips_instruction insn;
unsigned long targ;
int is_branch, is_cond, i;
targ = regs->cp0_epc;
insn.word = *(unsigned int *)targ;
is_branch = is_cond = 0;
switch (insn.i_format.opcode) {
/*
* jr and jalr are in r_format format.
*/
case spec_op:
switch (insn.r_format.func) {
case jalr_op:
case jr_op:
targ = *(&regs->reg0 + insn.r_format.rs);
is_branch = 1;
break;
}
break;
/*
* This group contains:
* bltz_op, bgez_op, bltzl_op, bgezl_op,
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
*/
case bcond_op:
is_branch = is_cond = 1;
targ += 4 + (insn.i_format.simmediate << 2);
break;
/*
* These are unconditional and in j_format.
*/
case jal_op:
case j_op:
is_branch = 1;
targ += 4;
targ >>= 28;
targ <<= 28;
targ |= (insn.j_format.target << 2);
break;
/*
* These are conditional.
*/
case beq_op:
case beql_op:
case bne_op:
case bnel_op:
case blez_op:
case blezl_op:
case bgtz_op:
case bgtzl_op:
case cop0_op:
case cop1_op:
case cop2_op:
case cop1x_op:
is_branch = is_cond = 1;
targ += 4 + (insn.i_format.simmediate << 2);
break;
}
if (is_branch) {
i = 0;
if (is_cond && targ != (regs->cp0_epc + 8)) {
step_bp[i].addr = regs->cp0_epc + 8;
step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
*(unsigned *)(regs->cp0_epc + 8) = BP;
}
step_bp[i].addr = targ;
step_bp[i].val = *(unsigned *)targ;
*(unsigned *)targ = BP;
} else {
step_bp[0].addr = regs->cp0_epc + 4;
step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
*(unsigned *)(regs->cp0_epc + 4) = BP;
}
}
/*
* If asynchronously interrupted by gdb, then we need to set a breakpoint
* at the interrupted instruction so that we wind up stopped with a
* reasonable stack frame.
*/
static struct gdb_bp_save async_bp;
/*
* Swap the interrupted EPC with our asynchronous breakpoint routine.
* This is safer than stuffing the breakpoint in-place, since no cache
* flushes (or resulting smp_call_functions) are required. The
* assumption is that only one CPU will be handling asynchronous bp's,
* and only one can be active at a time.
*/
extern spinlock_t smp_call_lock;
void set_async_breakpoint(unsigned long *epc)
{
/* skip breaking into userland */
if ((*epc & 0x80000000) == 0)
return;
#ifdef CONFIG_SMP
/* avoid deadlock if someone is make IPC */
if (spin_is_locked(&smp_call_lock))
return;
#endif
async_bp.addr = *epc;
*epc = (unsigned long)async_breakpoint;
}
static void kgdb_wait(void *arg)
{
unsigned flags;
int cpu = smp_processor_id();
local_irq_save(flags);
__raw_spin_lock(&kgdb_cpulock[cpu]);
__raw_spin_unlock(&kgdb_cpulock[cpu]);
local_irq_restore(flags);
}
/*
* GDB stub needs to call kgdb_wait on all processor with interrupts
* disabled, so it uses it's own special variant.
*/
static int kgdb_smp_call_kgdb_wait(void)
{
#ifdef CONFIG_SMP
struct call_data_struct data;
int i, cpus = num_online_cpus() - 1;
int cpu = smp_processor_id();
/*
* Can die spectacularly if this CPU isn't yet marked online
*/
BUG_ON(!cpu_online(cpu));
if (!cpus)
return 0;
if (spin_is_locked(&smp_call_lock)) {
/*
* Some other processor is trying to make us do something
* but we're not going to respond... give up
*/
return -1;
}
/*
* We will continue here, accepting the fact that
* the kernel may deadlock if another CPU attempts
* to call smp_call_function now...
*/
data.func = kgdb_wait;
data.info = NULL;
atomic_set(&data.started, 0);
data.wait = 0;
spin_lock(&smp_call_lock);
call_data = &data;
mb();
/* Send a message to all other CPUs and wait for them to respond */
for (i = 0; i < NR_CPUS; i++)
if (cpu_online(i) && i != cpu)
core_send_ipi(i, SMP_CALL_FUNCTION);
/* Wait for response */
/* FIXME: lock-up detection, backtrace on lock-up */
while (atomic_read(&data.started) != cpus)
barrier();
call_data = NULL;
spin_unlock(&smp_call_lock);
#endif
return 0;
}
/*
* This function does all command processing for interfacing to gdb. It
* returns 1 if you should skip the instruction at the trap address, 0
* otherwise.
*/
void handle_exception (struct gdb_regs *regs)
{
int trap; /* Trap type */
int sigval;
long addr;
int length;
char *ptr;
unsigned long *stack;
int i;
int bflag = 0;
kgdb_started = 1;
/*
* acquire the big kgdb spinlock
*/
if (!spin_trylock(&kgdb_lock)) {
/*
* some other CPU has the lock, we should go back to
* receive the gdb_wait IPC
*/
return;
}
/*
* If we're in async_breakpoint(), restore the real EPC from
* the breakpoint.
*/
if (regs->cp0_epc == (unsigned long)async_breakinst) {
regs->cp0_epc = async_bp.addr;
async_bp.addr = 0;
}
/*
* acquire the CPU spinlocks
*/
for (i = num_online_cpus()-1; i >= 0; i--)
if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
panic("kgdb: couldn't get cpulock %d\n", i);
/*
* force other cpus to enter kgdb
*/
kgdb_smp_call_kgdb_wait();
/*
* If we're in breakpoint() increment the PC
*/
trap = (regs->cp0_cause & 0x7c) >> 2;
if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
regs->cp0_epc += 4;
/*
* If we were single_stepping, restore the opcodes hoisted
* for the breakpoint[s].
*/
if (step_bp[0].addr) {
*(unsigned *)step_bp[0].addr = step_bp[0].val;
step_bp[0].addr = 0;
if (step_bp[1].addr) {
*(unsigned *)step_bp[1].addr = step_bp[1].val;
step_bp[1].addr = 0;
}
}
stack = (long *)regs->reg29; /* stack ptr */
sigval = computeSignal(trap);
/*
* reply to host that an exception has occurred
*/
ptr = output_buffer;
/*
* Send trap type (converted to signal)
*/
*ptr++ = 'T';
*ptr++ = hexchars[sigval >> 4];
*ptr++ = hexchars[sigval & 0xf];
/*
* Send Error PC
*/
*ptr++ = hexchars[REG_EPC >> 4];
*ptr++ = hexchars[REG_EPC & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&regs->cp0_epc, ptr, sizeof(long), 0);
*ptr++ = ';';
/*
* Send frame pointer
*/
*ptr++ = hexchars[REG_FP >> 4];
*ptr++ = hexchars[REG_FP & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&regs->reg30, ptr, sizeof(long), 0);
*ptr++ = ';';
/*
* Send stack pointer
*/
*ptr++ = hexchars[REG_SP >> 4];
*ptr++ = hexchars[REG_SP & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&regs->reg29, ptr, sizeof(long), 0);
*ptr++ = ';';
*ptr++ = 0;
putpacket(output_buffer); /* send it off... */
/*
* Wait for input from remote GDB
*/
while (1) {
output_buffer[0] = 0;
getpacket(input_buffer);
switch (input_buffer[0])
{
case '?':
output_buffer[0] = 'S';
output_buffer[1] = hexchars[sigval >> 4];
output_buffer[2] = hexchars[sigval & 0xf];
output_buffer[3] = 0;
break;
/*
* Detach debugger; let CPU run
*/
case 'D':
putpacket(output_buffer);
goto finish_kgdb;
break;
case 'd':
/* toggle debug flag */
break;
/*
* Return the value of the CPU registers
*/
case 'g':
ptr = output_buffer;
ptr = mem2hex((char *)&regs->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
ptr = mem2hex((char *)&regs->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
ptr = mem2hex((char *)&regs->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
ptr = mem2hex((char *)&regs->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
ptr = mem2hex((char *)&regs->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
ptr = mem2hex((char *)&regs->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
break;
/*
* set the value of the CPU registers - return OK
*/
case 'G':
{
ptr = &input_buffer[1];
hex2mem(ptr, (char *)&regs->reg0, 32*sizeof(long), 0, 0);
ptr += 32*(2*sizeof(long));
hex2mem(ptr, (char *)&regs->cp0_status, 6*sizeof(long), 0, 0);
ptr += 6*(2*sizeof(long));
hex2mem(ptr, (char *)&regs->fpr0, 32*sizeof(long), 0, 0);
ptr += 32*(2*sizeof(long));
hex2mem(ptr, (char *)&regs->cp1_fsr, 2*sizeof(long), 0, 0);
ptr += 2*(2*sizeof(long));
hex2mem(ptr, (char *)&regs->frame_ptr, 2*sizeof(long), 0, 0);
ptr += 2*(2*sizeof(long));
hex2mem(ptr, (char *)&regs->cp0_index, 16*sizeof(long), 0, 0);
strcpy(output_buffer,"OK");
}
break;
/*
* mAA..AA,LLLL Read LLLL bytes at address AA..AA
*/
case 'm':
ptr = &input_buffer[1];
if (hexToLong(&ptr, &addr)
&& *ptr++ == ','
&& hexToInt(&ptr, &length)) {
if (mem2hex((char *)addr, output_buffer, length, 1))
break;
strcpy (output_buffer, "E03");
} else
strcpy(output_buffer,"E01");
break;
/*
* XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
*/
case 'X':
bflag = 1;
/* fall through */
/*
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
*/
case 'M':
ptr = &input_buffer[1];
if (hexToLong(&ptr, &addr)
&& *ptr++ == ','
&& hexToInt(&ptr, &length)
&& *ptr++ == ':') {
if (hex2mem(ptr, (char *)addr, length, bflag, 1))
strcpy(output_buffer, "OK");
else
strcpy(output_buffer, "E03");
}
else
strcpy(output_buffer, "E02");
break;
/*
* cAA..AA Continue at address AA..AA(optional)
*/
case 'c':
/* try to read optional parameter, pc unchanged if no parm */
ptr = &input_buffer[1];
if (hexToLong(&ptr, &addr))
regs->cp0_epc = addr;
goto exit_kgdb_exception;
break;
/*
* kill the program; let us try to restart the machine
* Reset the whole machine.
*/
case 'k':
case 'r':
machine_restart("kgdb restarts machine");
break;
/*
* Step to next instruction
*/
case 's':
/*
* There is no single step insn in the MIPS ISA, so we
* use breakpoints and continue, instead.
*/
single_step(regs);
goto exit_kgdb_exception;
/* NOTREACHED */
break;
/*
* Set baud rate (bBB)
* FIXME: Needs to be written
*/
case 'b':
{
#if 0
int baudrate;
extern void set_timer_3();
ptr = &input_buffer[1];
if (!hexToInt(&ptr, &baudrate))
{
strcpy(output_buffer,"B01");
break;
}
/* Convert baud rate to uart clock divider */
switch (baudrate)
{
case 38400:
baudrate = 16;
break;
case 19200:
baudrate = 33;
break;
case 9600:
baudrate = 65;
break;
default:
baudrate = 0;
strcpy(output_buffer,"B02");
goto x1;
}
if (baudrate) {
putpacket("OK"); /* Ack before changing speed */
set_timer_3(baudrate); /* Set it */
}
#endif
}
break;
} /* switch */
/*
* reply to the request
*/
putpacket(output_buffer);
} /* while */
return;
finish_kgdb:
restore_debug_traps();
exit_kgdb_exception:
/* release locks so other CPUs can go */
for (i = num_online_cpus()-1; i >= 0; i--)
__raw_spin_unlock(&kgdb_cpulock[i]);
spin_unlock(&kgdb_lock);
__flush_cache_all();
return;
}
/*
* This function will generate a breakpoint exception. It is used at the
* beginning of a program to sync up with a debugger and can be used
* otherwise as a quick means to stop program execution and "break" into
* the debugger.
*/
void breakpoint(void)
{
if (!initialized)
return;
__asm__ __volatile__(
".globl breakinst\n\t"
".set\tnoreorder\n\t"
"nop\n"
"breakinst:\tbreak\n\t"
"nop\n\t"
".set\treorder"
);
}
/* Nothing but the break; don't pollute any registers */
void async_breakpoint(void)
{
__asm__ __volatile__(
".globl async_breakinst\n\t"
".set\tnoreorder\n\t"
"nop\n"
"async_breakinst:\tbreak\n\t"
"nop\n\t"
".set\treorder"
);
}
void adel(void)
{
__asm__ __volatile__(
".globl\tadel\n\t"
"lui\t$8,0x8000\n\t"
"lw\t$9,1($8)\n\t"
);
}
/*
* malloc is needed by gdb client in "call func()", even a private one
* will make gdb happy
*/
static void * __attribute_used__ malloc(size_t size)
{
return kmalloc(size, GFP_ATOMIC);
}
static void __attribute_used__ free (void *where)
{
kfree(where);
}
#ifdef CONFIG_GDB_CONSOLE
void gdb_putsn(const char *str, int l)
{
char outbuf[18];
if (!kgdb_started)
return;
outbuf[0]='O';
while(l) {
int i = (l>8)?8:l;
mem2hex((char *)str, &outbuf[1], i, 0);
outbuf[(i*2)+1]=0;
putpacket(outbuf);
str += i;
l -= i;
}
}
static void gdb_console_write(struct console *con, const char *s, unsigned n)
{
gdb_putsn(s, n);
}
static struct console gdb_console = {
.name = "gdb",
.write = gdb_console_write,
.flags = CON_PRINTBUFFER,
.index = -1
};
static int __init register_gdb_console(void)
{
register_console(&gdb_console);
return 0;
}
console_initcall(register_gdb_console);
#endif