linux-stable-rt/drivers/ata/pata_legacy.c

1299 lines
33 KiB
C

/*
* pata-legacy.c - Legacy port PATA/SATA controller driver.
* Copyright 2005/2006 Red Hat <alan@redhat.com>, all rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* An ATA driver for the legacy ATA ports.
*
* Data Sources:
* Opti 82C465/82C611 support: Data sheets at opti-inc.com
* HT6560 series:
* Promise 20230/20620:
* http://www.ryston.cz/petr/vlb/pdc20230b.html
* http://www.ryston.cz/petr/vlb/pdc20230c.html
* http://www.ryston.cz/petr/vlb/pdc20630.html
*
* Unsupported but docs exist:
* Appian/Adaptec AIC25VL01/Cirrus Logic PD7220
*
* This driver handles legacy (that is "ISA/VLB side") IDE ports found
* on PC class systems. There are three hybrid devices that are exceptions
* The Cyrix 5510/5520 where a pre SFF ATA device is on the bridge and
* the MPIIX where the tuning is PCI side but the IDE is "ISA side".
*
* Specific support is included for the ht6560a/ht6560b/opti82c611a/
* opti82c465mv/promise 20230c/20630/winbond83759A
*
* Use the autospeed and pio_mask options with:
* Appian ADI/2 aka CLPD7220 or AIC25VL01.
* Use the jumpers, autospeed and set pio_mask to the mode on the jumpers with
* Goldstar GM82C711, PIC-1288A-125, UMC 82C871F, Winbond W83759,
* Winbond W83759A, Promise PDC20230-B
*
* For now use autospeed and pio_mask as above with the W83759A. This may
* change.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <scsi/scsi_host.h>
#include <linux/ata.h>
#include <linux/libata.h>
#include <linux/platform_device.h>
#define DRV_NAME "pata_legacy"
#define DRV_VERSION "0.6.5"
#define NR_HOST 6
static int all;
module_param(all, int, 0444);
MODULE_PARM_DESC(all, "Grab all legacy port devices, even if PCI(0=off, 1=on)");
struct legacy_data {
unsigned long timing;
u8 clock[2];
u8 last;
int fast;
struct platform_device *platform_dev;
};
enum controller {
BIOS = 0,
SNOOP = 1,
PDC20230 = 2,
HT6560A = 3,
HT6560B = 4,
OPTI611A = 5,
OPTI46X = 6,
QDI6500 = 7,
QDI6580 = 8,
QDI6580DP = 9, /* Dual channel mode is different */
W83759A = 10,
UNKNOWN = -1
};
struct legacy_probe {
unsigned char *name;
unsigned long port;
unsigned int irq;
unsigned int slot;
enum controller type;
unsigned long private;
};
struct legacy_controller {
const char *name;
struct ata_port_operations *ops;
unsigned int pio_mask;
unsigned int flags;
int (*setup)(struct platform_device *, struct legacy_probe *probe,
struct legacy_data *data);
};
static int legacy_port[NR_HOST] = { 0x1f0, 0x170, 0x1e8, 0x168, 0x1e0, 0x160 };
static struct legacy_probe probe_list[NR_HOST];
static struct legacy_data legacy_data[NR_HOST];
static struct ata_host *legacy_host[NR_HOST];
static int nr_legacy_host;
static int probe_all; /* Set to check all ISA port ranges */
static int ht6560a; /* HT 6560A on primary 1, second 2, both 3 */
static int ht6560b; /* HT 6560A on primary 1, second 2, both 3 */
static int opti82c611a; /* Opti82c611A on primary 1, sec 2, both 3 */
static int opti82c46x; /* Opti 82c465MV present(pri/sec autodetect) */
static int qdi; /* Set to probe QDI controllers */
static int winbond; /* Set to probe Winbond controllers,
give I/O port if non standard */
static int autospeed; /* Chip present which snoops speed changes */
static int pio_mask = 0x1F; /* PIO range for autospeed devices */
static int iordy_mask = 0xFFFFFFFF; /* Use iordy if available */
/**
* legacy_probe_add - Add interface to probe list
* @port: Controller port
* @irq: IRQ number
* @type: Controller type
* @private: Controller specific info
*
* Add an entry into the probe list for ATA controllers. This is used
* to add the default ISA slots and then to build up the table
* further according to other ISA/VLB/Weird device scans
*
* An I/O port list is used to keep ordering stable and sane, as we
* don't have any good way to talk about ordering otherwise
*/
static int legacy_probe_add(unsigned long port, unsigned int irq,
enum controller type, unsigned long private)
{
struct legacy_probe *lp = &probe_list[0];
int i;
struct legacy_probe *free = NULL;
for (i = 0; i < NR_HOST; i++) {
if (lp->port == 0 && free == NULL)
free = lp;
/* Matching port, or the correct slot for ordering */
if (lp->port == port || legacy_port[i] == port) {
free = lp;
break;
}
lp++;
}
if (free == NULL) {
printk(KERN_ERR "pata_legacy: Too many interfaces.\n");
return -1;
}
/* Fill in the entry for later probing */
free->port = port;
free->irq = irq;
free->type = type;
free->private = private;
return 0;
}
/**
* legacy_set_mode - mode setting
* @link: IDE link
* @unused: Device that failed when error is returned
*
* Use a non standard set_mode function. We don't want to be tuned.
*
* The BIOS configured everything. Our job is not to fiddle. Just use
* whatever PIO the hardware is using and leave it at that. When we
* get some kind of nice user driven API for control then we can
* expand on this as per hdparm in the base kernel.
*/
static int legacy_set_mode(struct ata_link *link, struct ata_device **unused)
{
struct ata_device *dev;
ata_link_for_each_dev(dev, link) {
if (ata_dev_enabled(dev)) {
ata_dev_printk(dev, KERN_INFO,
"configured for PIO\n");
dev->pio_mode = XFER_PIO_0;
dev->xfer_mode = XFER_PIO_0;
dev->xfer_shift = ATA_SHIFT_PIO;
dev->flags |= ATA_DFLAG_PIO;
}
}
return 0;
}
static struct scsi_host_template legacy_sht = {
ATA_PIO_SHT(DRV_NAME),
};
static const struct ata_port_operations legacy_base_port_ops = {
.inherits = &ata_sff_port_ops,
.cable_detect = ata_cable_40wire,
};
/*
* These ops are used if the user indicates the hardware
* snoops the commands to decide on the mode and handles the
* mode selection "magically" itself. Several legacy controllers
* do this. The mode range can be set if it is not 0x1F by setting
* pio_mask as well.
*/
static struct ata_port_operations simple_port_ops = {
.inherits = &legacy_base_port_ops,
.sff_data_xfer = ata_sff_data_xfer_noirq,
};
static struct ata_port_operations legacy_port_ops = {
.inherits = &legacy_base_port_ops,
.sff_data_xfer = ata_sff_data_xfer_noirq,
.set_mode = legacy_set_mode,
};
/*
* Promise 20230C and 20620 support
*
* This controller supports PIO0 to PIO2. We set PIO timings
* conservatively to allow for 50MHz Vesa Local Bus. The 20620 DMA
* support is weird being DMA to controller and PIO'd to the host
* and not supported.
*/
static void pdc20230_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
int tries = 5;
int pio = adev->pio_mode - XFER_PIO_0;
u8 rt;
unsigned long flags;
/* Safe as UP only. Force I/Os to occur together */
local_irq_save(flags);
/* Unlock the control interface */
do {
inb(0x1F5);
outb(inb(0x1F2) | 0x80, 0x1F2);
inb(0x1F2);
inb(0x3F6);
inb(0x3F6);
inb(0x1F2);
inb(0x1F2);
}
while ((inb(0x1F2) & 0x80) && --tries);
local_irq_restore(flags);
outb(inb(0x1F4) & 0x07, 0x1F4);
rt = inb(0x1F3);
rt &= 0x07 << (3 * adev->devno);
if (pio)
rt |= (1 + 3 * pio) << (3 * adev->devno);
udelay(100);
outb(inb(0x1F2) | 0x01, 0x1F2);
udelay(100);
inb(0x1F5);
}
static unsigned int pdc_data_xfer_vlb(struct ata_device *dev,
unsigned char *buf, unsigned int buflen, int rw)
{
if (ata_id_has_dword_io(dev->id)) {
struct ata_port *ap = dev->link->ap;
int slop = buflen & 3;
unsigned long flags;
local_irq_save(flags);
/* Perform the 32bit I/O synchronization sequence */
ioread8(ap->ioaddr.nsect_addr);
ioread8(ap->ioaddr.nsect_addr);
ioread8(ap->ioaddr.nsect_addr);
/* Now the data */
if (rw == READ)
ioread32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
else
iowrite32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
if (unlikely(slop)) {
u32 pad;
if (rw == READ) {
pad = cpu_to_le32(ioread32(ap->ioaddr.data_addr));
memcpy(buf + buflen - slop, &pad, slop);
} else {
memcpy(&pad, buf + buflen - slop, slop);
iowrite32(le32_to_cpu(pad), ap->ioaddr.data_addr);
}
buflen += 4 - slop;
}
local_irq_restore(flags);
} else
buflen = ata_sff_data_xfer_noirq(dev, buf, buflen, rw);
return buflen;
}
static struct ata_port_operations pdc20230_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = pdc20230_set_piomode,
.sff_data_xfer = pdc_data_xfer_vlb,
};
/*
* Holtek 6560A support
*
* This controller supports PIO0 to PIO2 (no IORDY even though higher
* timings can be loaded).
*/
static void ht6560a_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
u8 active, recover;
struct ata_timing t;
/* Get the timing data in cycles. For now play safe at 50Mhz */
ata_timing_compute(adev, adev->pio_mode, &t, 20000, 1000);
active = clamp_val(t.active, 2, 15);
recover = clamp_val(t.recover, 4, 15);
inb(0x3E6);
inb(0x3E6);
inb(0x3E6);
inb(0x3E6);
iowrite8(recover << 4 | active, ap->ioaddr.device_addr);
ioread8(ap->ioaddr.status_addr);
}
static struct ata_port_operations ht6560a_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = ht6560a_set_piomode,
};
/*
* Holtek 6560B support
*
* This controller supports PIO0 to PIO4. We honour the BIOS/jumper FIFO
* setting unless we see an ATAPI device in which case we force it off.
*
* FIXME: need to implement 2nd channel support.
*/
static void ht6560b_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
u8 active, recover;
struct ata_timing t;
/* Get the timing data in cycles. For now play safe at 50Mhz */
ata_timing_compute(adev, adev->pio_mode, &t, 20000, 1000);
active = clamp_val(t.active, 2, 15);
recover = clamp_val(t.recover, 2, 16);
recover &= 0x15;
inb(0x3E6);
inb(0x3E6);
inb(0x3E6);
inb(0x3E6);
iowrite8(recover << 4 | active, ap->ioaddr.device_addr);
if (adev->class != ATA_DEV_ATA) {
u8 rconf = inb(0x3E6);
if (rconf & 0x24) {
rconf &= ~0x24;
outb(rconf, 0x3E6);
}
}
ioread8(ap->ioaddr.status_addr);
}
static struct ata_port_operations ht6560b_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = ht6560b_set_piomode,
};
/*
* Opti core chipset helpers
*/
/**
* opti_syscfg - read OPTI chipset configuration
* @reg: Configuration register to read
*
* Returns the value of an OPTI system board configuration register.
*/
static u8 opti_syscfg(u8 reg)
{
unsigned long flags;
u8 r;
/* Uniprocessor chipset and must force cycles adjancent */
local_irq_save(flags);
outb(reg, 0x22);
r = inb(0x24);
local_irq_restore(flags);
return r;
}
/*
* Opti 82C611A
*
* This controller supports PIO0 to PIO3.
*/
static void opti82c611a_set_piomode(struct ata_port *ap,
struct ata_device *adev)
{
u8 active, recover, setup;
struct ata_timing t;
struct ata_device *pair = ata_dev_pair(adev);
int clock;
int khz[4] = { 50000, 40000, 33000, 25000 };
u8 rc;
/* Enter configuration mode */
ioread16(ap->ioaddr.error_addr);
ioread16(ap->ioaddr.error_addr);
iowrite8(3, ap->ioaddr.nsect_addr);
/* Read VLB clock strapping */
clock = 1000000000 / khz[ioread8(ap->ioaddr.lbah_addr) & 0x03];
/* Get the timing data in cycles */
ata_timing_compute(adev, adev->pio_mode, &t, clock, 1000);
/* Setup timing is shared */
if (pair) {
struct ata_timing tp;
ata_timing_compute(pair, pair->pio_mode, &tp, clock, 1000);
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
}
active = clamp_val(t.active, 2, 17) - 2;
recover = clamp_val(t.recover, 1, 16) - 1;
setup = clamp_val(t.setup, 1, 4) - 1;
/* Select the right timing bank for write timing */
rc = ioread8(ap->ioaddr.lbal_addr);
rc &= 0x7F;
rc |= (adev->devno << 7);
iowrite8(rc, ap->ioaddr.lbal_addr);
/* Write the timings */
iowrite8(active << 4 | recover, ap->ioaddr.error_addr);
/* Select the right bank for read timings, also
load the shared timings for address */
rc = ioread8(ap->ioaddr.device_addr);
rc &= 0xC0;
rc |= adev->devno; /* Index select */
rc |= (setup << 4) | 0x04;
iowrite8(rc, ap->ioaddr.device_addr);
/* Load the read timings */
iowrite8(active << 4 | recover, ap->ioaddr.data_addr);
/* Ensure the timing register mode is right */
rc = ioread8(ap->ioaddr.lbal_addr);
rc &= 0x73;
rc |= 0x84;
iowrite8(rc, ap->ioaddr.lbal_addr);
/* Exit command mode */
iowrite8(0x83, ap->ioaddr.nsect_addr);
}
static struct ata_port_operations opti82c611a_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = opti82c611a_set_piomode,
};
/*
* Opti 82C465MV
*
* This controller supports PIO0 to PIO3. Unlike the 611A the MVB
* version is dual channel but doesn't have a lot of unique registers.
*/
static void opti82c46x_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
u8 active, recover, setup;
struct ata_timing t;
struct ata_device *pair = ata_dev_pair(adev);
int clock;
int khz[4] = { 50000, 40000, 33000, 25000 };
u8 rc;
u8 sysclk;
/* Get the clock */
sysclk = opti_syscfg(0xAC) & 0xC0; /* BIOS set */
/* Enter configuration mode */
ioread16(ap->ioaddr.error_addr);
ioread16(ap->ioaddr.error_addr);
iowrite8(3, ap->ioaddr.nsect_addr);
/* Read VLB clock strapping */
clock = 1000000000 / khz[sysclk];
/* Get the timing data in cycles */
ata_timing_compute(adev, adev->pio_mode, &t, clock, 1000);
/* Setup timing is shared */
if (pair) {
struct ata_timing tp;
ata_timing_compute(pair, pair->pio_mode, &tp, clock, 1000);
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
}
active = clamp_val(t.active, 2, 17) - 2;
recover = clamp_val(t.recover, 1, 16) - 1;
setup = clamp_val(t.setup, 1, 4) - 1;
/* Select the right timing bank for write timing */
rc = ioread8(ap->ioaddr.lbal_addr);
rc &= 0x7F;
rc |= (adev->devno << 7);
iowrite8(rc, ap->ioaddr.lbal_addr);
/* Write the timings */
iowrite8(active << 4 | recover, ap->ioaddr.error_addr);
/* Select the right bank for read timings, also
load the shared timings for address */
rc = ioread8(ap->ioaddr.device_addr);
rc &= 0xC0;
rc |= adev->devno; /* Index select */
rc |= (setup << 4) | 0x04;
iowrite8(rc, ap->ioaddr.device_addr);
/* Load the read timings */
iowrite8(active << 4 | recover, ap->ioaddr.data_addr);
/* Ensure the timing register mode is right */
rc = ioread8(ap->ioaddr.lbal_addr);
rc &= 0x73;
rc |= 0x84;
iowrite8(rc, ap->ioaddr.lbal_addr);
/* Exit command mode */
iowrite8(0x83, ap->ioaddr.nsect_addr);
/* We need to know this for quad device on the MVB */
ap->host->private_data = ap;
}
/**
* opt82c465mv_qc_issue - command issue
* @qc: command pending
*
* Called when the libata layer is about to issue a command. We wrap
* this interface so that we can load the correct ATA timings. The
* MVB has a single set of timing registers and these are shared
* across channels. As there are two registers we really ought to
* track the last two used values as a sort of register window. For
* now we just reload on a channel switch. On the single channel
* setup this condition never fires so we do nothing extra.
*
* FIXME: dual channel needs ->serialize support
*/
static unsigned int opti82c46x_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *adev = qc->dev;
/* If timings are set and for the wrong channel (2nd test is
due to a libata shortcoming and will eventually go I hope) */
if (ap->host->private_data != ap->host
&& ap->host->private_data != NULL)
opti82c46x_set_piomode(ap, adev);
return ata_sff_qc_issue(qc);
}
static struct ata_port_operations opti82c46x_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = opti82c46x_set_piomode,
.qc_issue = opti82c46x_qc_issue,
};
static void qdi6500_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct ata_timing t;
struct legacy_data *ld_qdi = ap->host->private_data;
int active, recovery;
u8 timing;
/* Get the timing data in cycles */
ata_timing_compute(adev, adev->pio_mode, &t, 30303, 1000);
if (ld_qdi->fast) {
active = 8 - clamp_val(t.active, 1, 8);
recovery = 18 - clamp_val(t.recover, 3, 18);
} else {
active = 9 - clamp_val(t.active, 2, 9);
recovery = 15 - clamp_val(t.recover, 0, 15);
}
timing = (recovery << 4) | active | 0x08;
ld_qdi->clock[adev->devno] = timing;
outb(timing, ld_qdi->timing);
}
/**
* qdi6580dp_set_piomode - PIO setup for dual channel
* @ap: Port
* @adev: Device
* @irq: interrupt line
*
* In dual channel mode the 6580 has one clock per channel and we have
* to software clockswitch in qc_issue.
*/
static void qdi6580dp_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct ata_timing t;
struct legacy_data *ld_qdi = ap->host->private_data;
int active, recovery;
u8 timing;
/* Get the timing data in cycles */
ata_timing_compute(adev, adev->pio_mode, &t, 30303, 1000);
if (ld_qdi->fast) {
active = 8 - clamp_val(t.active, 1, 8);
recovery = 18 - clamp_val(t.recover, 3, 18);
} else {
active = 9 - clamp_val(t.active, 2, 9);
recovery = 15 - clamp_val(t.recover, 0, 15);
}
timing = (recovery << 4) | active | 0x08;
ld_qdi->clock[adev->devno] = timing;
outb(timing, ld_qdi->timing + 2 * ap->port_no);
/* Clear the FIFO */
if (adev->class != ATA_DEV_ATA)
outb(0x5F, ld_qdi->timing + 3);
}
/**
* qdi6580_set_piomode - PIO setup for single channel
* @ap: Port
* @adev: Device
*
* In single channel mode the 6580 has one clock per device and we can
* avoid the requirement to clock switch. We also have to load the timing
* into the right clock according to whether we are master or slave.
*/
static void qdi6580_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct ata_timing t;
struct legacy_data *ld_qdi = ap->host->private_data;
int active, recovery;
u8 timing;
/* Get the timing data in cycles */
ata_timing_compute(adev, adev->pio_mode, &t, 30303, 1000);
if (ld_qdi->fast) {
active = 8 - clamp_val(t.active, 1, 8);
recovery = 18 - clamp_val(t.recover, 3, 18);
} else {
active = 9 - clamp_val(t.active, 2, 9);
recovery = 15 - clamp_val(t.recover, 0, 15);
}
timing = (recovery << 4) | active | 0x08;
ld_qdi->clock[adev->devno] = timing;
outb(timing, ld_qdi->timing + 2 * adev->devno);
/* Clear the FIFO */
if (adev->class != ATA_DEV_ATA)
outb(0x5F, ld_qdi->timing + 3);
}
/**
* qdi_qc_issue - command issue
* @qc: command pending
*
* Called when the libata layer is about to issue a command. We wrap
* this interface so that we can load the correct ATA timings.
*/
static unsigned int qdi_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *adev = qc->dev;
struct legacy_data *ld_qdi = ap->host->private_data;
if (ld_qdi->clock[adev->devno] != ld_qdi->last) {
if (adev->pio_mode) {
ld_qdi->last = ld_qdi->clock[adev->devno];
outb(ld_qdi->clock[adev->devno], ld_qdi->timing +
2 * ap->port_no);
}
}
return ata_sff_qc_issue(qc);
}
static unsigned int vlb32_data_xfer(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int rw)
{
struct ata_port *ap = adev->link->ap;
int slop = buflen & 3;
if (ata_id_has_dword_io(adev->id)) {
if (rw == WRITE)
iowrite32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
else
ioread32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
if (unlikely(slop)) {
u32 pad;
if (rw == WRITE) {
memcpy(&pad, buf + buflen - slop, slop);
pad = le32_to_cpu(pad);
iowrite32(pad, ap->ioaddr.data_addr);
} else {
pad = ioread32(ap->ioaddr.data_addr);
pad = cpu_to_le32(pad);
memcpy(buf + buflen - slop, &pad, slop);
}
}
return (buflen + 3) & ~3;
} else
return ata_sff_data_xfer(adev, buf, buflen, rw);
}
static int qdi_port(struct platform_device *dev,
struct legacy_probe *lp, struct legacy_data *ld)
{
if (devm_request_region(&dev->dev, lp->private, 4, "qdi") == NULL)
return -EBUSY;
ld->timing = lp->private;
return 0;
}
static struct ata_port_operations qdi6500_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = qdi6500_set_piomode,
.qc_issue = qdi_qc_issue,
.sff_data_xfer = vlb32_data_xfer,
};
static struct ata_port_operations qdi6580_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = qdi6580_set_piomode,
.sff_data_xfer = vlb32_data_xfer,
};
static struct ata_port_operations qdi6580dp_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = qdi6580dp_set_piomode,
.sff_data_xfer = vlb32_data_xfer,
};
static DEFINE_SPINLOCK(winbond_lock);
static void winbond_writecfg(unsigned long port, u8 reg, u8 val)
{
unsigned long flags;
spin_lock_irqsave(&winbond_lock, flags);
outb(reg, port + 0x01);
outb(val, port + 0x02);
spin_unlock_irqrestore(&winbond_lock, flags);
}
static u8 winbond_readcfg(unsigned long port, u8 reg)
{
u8 val;
unsigned long flags;
spin_lock_irqsave(&winbond_lock, flags);
outb(reg, port + 0x01);
val = inb(port + 0x02);
spin_unlock_irqrestore(&winbond_lock, flags);
return val;
}
static void winbond_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct ata_timing t;
struct legacy_data *ld_winbond = ap->host->private_data;
int active, recovery;
u8 reg;
int timing = 0x88 + (ap->port_no * 4) + (adev->devno * 2);
reg = winbond_readcfg(ld_winbond->timing, 0x81);
/* Get the timing data in cycles */
if (reg & 0x40) /* Fast VLB bus, assume 50MHz */
ata_timing_compute(adev, adev->pio_mode, &t, 20000, 1000);
else
ata_timing_compute(adev, adev->pio_mode, &t, 30303, 1000);
active = (clamp_val(t.active, 3, 17) - 1) & 0x0F;
recovery = (clamp_val(t.recover, 1, 15) + 1) & 0x0F;
timing = (active << 4) | recovery;
winbond_writecfg(ld_winbond->timing, timing, reg);
/* Load the setup timing */
reg = 0x35;
if (adev->class != ATA_DEV_ATA)
reg |= 0x08; /* FIFO off */
if (!ata_pio_need_iordy(adev))
reg |= 0x02; /* IORDY off */
reg |= (clamp_val(t.setup, 0, 3) << 6);
winbond_writecfg(ld_winbond->timing, timing + 1, reg);
}
static int winbond_port(struct platform_device *dev,
struct legacy_probe *lp, struct legacy_data *ld)
{
if (devm_request_region(&dev->dev, lp->private, 4, "winbond") == NULL)
return -EBUSY;
ld->timing = lp->private;
return 0;
}
static struct ata_port_operations winbond_port_ops = {
.inherits = &legacy_base_port_ops,
.set_piomode = winbond_set_piomode,
.sff_data_xfer = vlb32_data_xfer,
};
static struct legacy_controller controllers[] = {
{"BIOS", &legacy_port_ops, 0x1F,
ATA_FLAG_NO_IORDY, NULL },
{"Snooping", &simple_port_ops, 0x1F,
0 , NULL },
{"PDC20230", &pdc20230_port_ops, 0x7,
ATA_FLAG_NO_IORDY, NULL },
{"HT6560A", &ht6560a_port_ops, 0x07,
ATA_FLAG_NO_IORDY, NULL },
{"HT6560B", &ht6560b_port_ops, 0x1F,
ATA_FLAG_NO_IORDY, NULL },
{"OPTI82C611A", &opti82c611a_port_ops, 0x0F,
0 , NULL },
{"OPTI82C46X", &opti82c46x_port_ops, 0x0F,
0 , NULL },
{"QDI6500", &qdi6500_port_ops, 0x07,
ATA_FLAG_NO_IORDY, qdi_port },
{"QDI6580", &qdi6580_port_ops, 0x1F,
0 , qdi_port },
{"QDI6580DP", &qdi6580dp_port_ops, 0x1F,
0 , qdi_port },
{"W83759A", &winbond_port_ops, 0x1F,
0 , winbond_port }
};
/**
* probe_chip_type - Discover controller
* @probe: Probe entry to check
*
* Probe an ATA port and identify the type of controller. We don't
* check if the controller appears to be driveless at this point.
*/
static __init int probe_chip_type(struct legacy_probe *probe)
{
int mask = 1 << probe->slot;
if (winbond && (probe->port == 0x1F0 || probe->port == 0x170)) {
u8 reg = winbond_readcfg(winbond, 0x81);
reg |= 0x80; /* jumpered mode off */
winbond_writecfg(winbond, 0x81, reg);
reg = winbond_readcfg(winbond, 0x83);
reg |= 0xF0; /* local control */
winbond_writecfg(winbond, 0x83, reg);
reg = winbond_readcfg(winbond, 0x85);
reg |= 0xF0; /* programmable timing */
winbond_writecfg(winbond, 0x85, reg);
reg = winbond_readcfg(winbond, 0x81);
if (reg & mask)
return W83759A;
}
if (probe->port == 0x1F0) {
unsigned long flags;
local_irq_save(flags);
/* Probes */
outb(inb(0x1F2) | 0x80, 0x1F2);
inb(0x1F5);
inb(0x1F2);
inb(0x3F6);
inb(0x3F6);
inb(0x1F2);
inb(0x1F2);
if ((inb(0x1F2) & 0x80) == 0) {
/* PDC20230c or 20630 ? */
printk(KERN_INFO "PDC20230-C/20630 VLB ATA controller"
" detected.\n");
udelay(100);
inb(0x1F5);
local_irq_restore(flags);
return PDC20230;
} else {
outb(0x55, 0x1F2);
inb(0x1F2);
inb(0x1F2);
if (inb(0x1F2) == 0x00)
printk(KERN_INFO "PDC20230-B VLB ATA "
"controller detected.\n");
local_irq_restore(flags);
return BIOS;
}
local_irq_restore(flags);
}
if (ht6560a & mask)
return HT6560A;
if (ht6560b & mask)
return HT6560B;
if (opti82c611a & mask)
return OPTI611A;
if (opti82c46x & mask)
return OPTI46X;
if (autospeed & mask)
return SNOOP;
return BIOS;
}
/**
* legacy_init_one - attach a legacy interface
* @pl: probe record
*
* Register an ISA bus IDE interface. Such interfaces are PIO and we
* assume do not support IRQ sharing.
*/
static __init int legacy_init_one(struct legacy_probe *probe)
{
struct legacy_controller *controller = &controllers[probe->type];
int pio_modes = controller->pio_mask;
unsigned long io = probe->port;
u32 mask = (1 << probe->slot);
struct ata_port_operations *ops = controller->ops;
struct legacy_data *ld = &legacy_data[probe->slot];
struct ata_host *host = NULL;
struct ata_port *ap;
struct platform_device *pdev;
struct ata_device *dev;
void __iomem *io_addr, *ctrl_addr;
u32 iordy = (iordy_mask & mask) ? 0: ATA_FLAG_NO_IORDY;
int ret;
iordy |= controller->flags;
pdev = platform_device_register_simple(DRV_NAME, probe->slot, NULL, 0);
if (IS_ERR(pdev))
return PTR_ERR(pdev);
ret = -EBUSY;
if (devm_request_region(&pdev->dev, io, 8, "pata_legacy") == NULL ||
devm_request_region(&pdev->dev, io + 0x0206, 1,
"pata_legacy") == NULL)
goto fail;
ret = -ENOMEM;
io_addr = devm_ioport_map(&pdev->dev, io, 8);
ctrl_addr = devm_ioport_map(&pdev->dev, io + 0x0206, 1);
if (!io_addr || !ctrl_addr)
goto fail;
if (controller->setup)
if (controller->setup(pdev, probe, ld) < 0)
goto fail;
host = ata_host_alloc(&pdev->dev, 1);
if (!host)
goto fail;
ap = host->ports[0];
ap->ops = ops;
ap->pio_mask = pio_modes;
ap->flags |= ATA_FLAG_SLAVE_POSS | iordy;
ap->ioaddr.cmd_addr = io_addr;
ap->ioaddr.altstatus_addr = ctrl_addr;
ap->ioaddr.ctl_addr = ctrl_addr;
ata_sff_std_ports(&ap->ioaddr);
ap->host->private_data = ld;
ata_port_desc(ap, "cmd 0x%lx ctl 0x%lx", io, io + 0x0206);
ret = ata_host_activate(host, probe->irq, ata_sff_interrupt, 0,
&legacy_sht);
if (ret)
goto fail;
ld->platform_dev = pdev;
/* Nothing found means we drop the port as its probably not there */
ret = -ENODEV;
ata_link_for_each_dev(dev, &ap->link) {
if (!ata_dev_absent(dev)) {
legacy_host[probe->slot] = host;
ld->platform_dev = pdev;
return 0;
}
}
fail:
platform_device_unregister(pdev);
return ret;
}
/**
* legacy_check_special_cases - ATA special cases
* @p: PCI device to check
* @master: set this if we find an ATA master
* @master: set this if we find an ATA secondary
*
* A small number of vendors implemented early PCI ATA interfaces
* on bridge logic without the ATA interface being PCI visible.
* Where we have a matching PCI driver we must skip the relevant
* device here. If we don't know about it then the legacy driver
* is the right driver anyway.
*/
static void __init legacy_check_special_cases(struct pci_dev *p, int *primary,
int *secondary)
{
/* Cyrix CS5510 pre SFF MWDMA ATA on the bridge */
if (p->vendor == 0x1078 && p->device == 0x0000) {
*primary = *secondary = 1;
return;
}
/* Cyrix CS5520 pre SFF MWDMA ATA on the bridge */
if (p->vendor == 0x1078 && p->device == 0x0002) {
*primary = *secondary = 1;
return;
}
/* Intel MPIIX - PIO ATA on non PCI side of bridge */
if (p->vendor == 0x8086 && p->device == 0x1234) {
u16 r;
pci_read_config_word(p, 0x6C, &r);
if (r & 0x8000) {
/* ATA port enabled */
if (r & 0x4000)
*secondary = 1;
else
*primary = 1;
}
return;
}
}
static __init void probe_opti_vlb(void)
{
/* If an OPTI 82C46X is present find out where the channels are */
static const char *optis[4] = {
"3/463MV", "5MV",
"5MVA", "5MVB"
};
u8 chans = 1;
u8 ctrl = (opti_syscfg(0x30) & 0xC0) >> 6;
opti82c46x = 3; /* Assume master and slave first */
printk(KERN_INFO DRV_NAME ": Opti 82C46%s chipset support.\n",
optis[ctrl]);
if (ctrl == 3)
chans = (opti_syscfg(0x3F) & 0x20) ? 2 : 1;
ctrl = opti_syscfg(0xAC);
/* Check enabled and this port is the 465MV port. On the
MVB we may have two channels */
if (ctrl & 8) {
if (chans == 2) {
legacy_probe_add(0x1F0, 14, OPTI46X, 0);
legacy_probe_add(0x170, 15, OPTI46X, 0);
}
if (ctrl & 4)
legacy_probe_add(0x170, 15, OPTI46X, 0);
else
legacy_probe_add(0x1F0, 14, OPTI46X, 0);
} else
legacy_probe_add(0x1F0, 14, OPTI46X, 0);
}
static __init void qdi65_identify_port(u8 r, u8 res, unsigned long port)
{
static const unsigned long ide_port[2] = { 0x170, 0x1F0 };
/* Check card type */
if ((r & 0xF0) == 0xC0) {
/* QD6500: single channel */
if (r & 8)
/* Disabled ? */
return;
legacy_probe_add(ide_port[r & 0x01], 14 + (r & 0x01),
QDI6500, port);
}
if (((r & 0xF0) == 0xA0) || (r & 0xF0) == 0x50) {
/* QD6580: dual channel */
if (!request_region(port + 2 , 2, "pata_qdi")) {
release_region(port, 2);
return;
}
res = inb(port + 3);
/* Single channel mode ? */
if (res & 1)
legacy_probe_add(ide_port[r & 0x01], 14 + (r & 0x01),
QDI6580, port);
else { /* Dual channel mode */
legacy_probe_add(0x1F0, 14, QDI6580DP, port);
/* port + 0x02, r & 0x04 */
legacy_probe_add(0x170, 15, QDI6580DP, port + 2);
}
release_region(port + 2, 2);
}
}
static __init void probe_qdi_vlb(void)
{
unsigned long flags;
static const unsigned long qd_port[2] = { 0x30, 0xB0 };
int i;
/*
* Check each possible QD65xx base address
*/
for (i = 0; i < 2; i++) {
unsigned long port = qd_port[i];
u8 r, res;
if (request_region(port, 2, "pata_qdi")) {
/* Check for a card */
local_irq_save(flags);
/* I have no h/w that needs this delay but it
is present in the historic code */
r = inb(port);
udelay(1);
outb(0x19, port);
udelay(1);
res = inb(port);
udelay(1);
outb(r, port);
udelay(1);
local_irq_restore(flags);
/* Fail */
if (res == 0x19) {
release_region(port, 2);
continue;
}
/* Passes the presence test */
r = inb(port + 1);
udelay(1);
/* Check port agrees with port set */
if ((r & 2) >> 1 == i)
qdi65_identify_port(r, res, port);
release_region(port, 2);
}
}
}
/**
* legacy_init - attach legacy interfaces
*
* Attach legacy IDE interfaces by scanning the usual IRQ/port suspects.
* Right now we do not scan the ide0 and ide1 address but should do so
* for non PCI systems or systems with no PCI IDE legacy mode devices.
* If you fix that note there are special cases to consider like VLB
* drivers and CS5510/20.
*/
static __init int legacy_init(void)
{
int i;
int ct = 0;
int primary = 0;
int secondary = 0;
int pci_present = 0;
struct legacy_probe *pl = &probe_list[0];
int slot = 0;
struct pci_dev *p = NULL;
for_each_pci_dev(p) {
int r;
/* Check for any overlap of the system ATA mappings. Native
mode controllers stuck on these addresses or some devices
in 'raid' mode won't be found by the storage class test */
for (r = 0; r < 6; r++) {
if (pci_resource_start(p, r) == 0x1f0)
primary = 1;
if (pci_resource_start(p, r) == 0x170)
secondary = 1;
}
/* Check for special cases */
legacy_check_special_cases(p, &primary, &secondary);
/* If PCI bus is present then don't probe for tertiary
legacy ports */
pci_present = 1;
}
if (winbond == 1)
winbond = 0x130; /* Default port, alt is 1B0 */
if (primary == 0 || all)
legacy_probe_add(0x1F0, 14, UNKNOWN, 0);
if (secondary == 0 || all)
legacy_probe_add(0x170, 15, UNKNOWN, 0);
if (probe_all || !pci_present) {
/* ISA/VLB extra ports */
legacy_probe_add(0x1E8, 11, UNKNOWN, 0);
legacy_probe_add(0x168, 10, UNKNOWN, 0);
legacy_probe_add(0x1E0, 8, UNKNOWN, 0);
legacy_probe_add(0x160, 12, UNKNOWN, 0);
}
if (opti82c46x)
probe_opti_vlb();
if (qdi)
probe_qdi_vlb();
for (i = 0; i < NR_HOST; i++, pl++) {
if (pl->port == 0)
continue;
if (pl->type == UNKNOWN)
pl->type = probe_chip_type(pl);
pl->slot = slot++;
if (legacy_init_one(pl) == 0)
ct++;
}
if (ct != 0)
return 0;
return -ENODEV;
}
static __exit void legacy_exit(void)
{
int i;
for (i = 0; i < nr_legacy_host; i++) {
struct legacy_data *ld = &legacy_data[i];
ata_host_detach(legacy_host[i]);
platform_device_unregister(ld->platform_dev);
}
}
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("low-level driver for legacy ATA");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_param(probe_all, int, 0);
module_param(autospeed, int, 0);
module_param(ht6560a, int, 0);
module_param(ht6560b, int, 0);
module_param(opti82c611a, int, 0);
module_param(opti82c46x, int, 0);
module_param(qdi, int, 0);
module_param(pio_mask, int, 0);
module_param(iordy_mask, int, 0);
module_init(legacy_init);
module_exit(legacy_exit);