472 lines
13 KiB
C
472 lines
13 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <asm/sn/nodepda.h>
|
|
#include <asm/sn/addrs.h>
|
|
#include <asm/sn/arch.h>
|
|
#include <asm/sn/sn_cpuid.h>
|
|
#include <asm/sn/pda.h>
|
|
#include <asm/sn/shubio.h>
|
|
#include <asm/nodedata.h>
|
|
#include <asm/delay.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/sn/bte.h>
|
|
|
|
#ifndef L1_CACHE_MASK
|
|
#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
|
|
#endif
|
|
|
|
/* two interfaces on two btes */
|
|
#define MAX_INTERFACES_TO_TRY 4
|
|
#define MAX_NODES_TO_TRY 2
|
|
|
|
static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
|
|
{
|
|
nodepda_t *tmp_nodepda;
|
|
|
|
if (nasid_to_cnodeid(nasid) == -1)
|
|
return (struct bteinfo_s *)NULL;
|
|
|
|
tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
|
|
return &tmp_nodepda->bte_if[interface];
|
|
|
|
}
|
|
|
|
static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
|
|
{
|
|
if (is_shub2()) {
|
|
BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
|
|
} else {
|
|
BTE_LNSTAT_STORE(bte, len);
|
|
BTE_CTRL_STORE(bte, mode);
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Block Transfer Engine copy related functions.
|
|
*
|
|
***********************************************************************/
|
|
|
|
/*
|
|
* bte_copy(src, dest, len, mode, notification)
|
|
*
|
|
* Use the block transfer engine to move kernel memory from src to dest
|
|
* using the assigned mode.
|
|
*
|
|
* Paramaters:
|
|
* src - physical address of the transfer source.
|
|
* dest - physical address of the transfer destination.
|
|
* len - number of bytes to transfer from source to dest.
|
|
* mode - hardware defined. See reference information
|
|
* for IBCT0/1 in the SHUB Programmers Reference
|
|
* notification - kernel virtual address of the notification cache
|
|
* line. If NULL, the default is used and
|
|
* the bte_copy is synchronous.
|
|
*
|
|
* NOTE: This function requires src, dest, and len to
|
|
* be cacheline aligned.
|
|
*/
|
|
bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
|
|
{
|
|
u64 transfer_size;
|
|
u64 transfer_stat;
|
|
u64 notif_phys_addr;
|
|
struct bteinfo_s *bte;
|
|
bte_result_t bte_status;
|
|
unsigned long irq_flags;
|
|
unsigned long itc_end = 0;
|
|
int nasid_to_try[MAX_NODES_TO_TRY];
|
|
int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
|
|
int bte_if_index, nasid_index;
|
|
int bte_first, btes_per_node = BTES_PER_NODE;
|
|
|
|
BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
|
|
src, dest, len, mode, notification));
|
|
|
|
if (len == 0) {
|
|
return BTE_SUCCESS;
|
|
}
|
|
|
|
BUG_ON((len & L1_CACHE_MASK) ||
|
|
(src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
|
|
BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
|
|
|
|
/*
|
|
* Start with interface corresponding to cpu number
|
|
*/
|
|
bte_first = raw_smp_processor_id() % btes_per_node;
|
|
|
|
if (mode & BTE_USE_DEST) {
|
|
/* try remote then local */
|
|
nasid_to_try[0] = NASID_GET(dest);
|
|
if (mode & BTE_USE_ANY) {
|
|
nasid_to_try[1] = my_nasid;
|
|
} else {
|
|
nasid_to_try[1] = (int)NULL;
|
|
}
|
|
} else {
|
|
/* try local then remote */
|
|
nasid_to_try[0] = my_nasid;
|
|
if (mode & BTE_USE_ANY) {
|
|
nasid_to_try[1] = NASID_GET(dest);
|
|
} else {
|
|
nasid_to_try[1] = (int)NULL;
|
|
}
|
|
}
|
|
|
|
retry_bteop:
|
|
do {
|
|
local_irq_save(irq_flags);
|
|
|
|
bte_if_index = bte_first;
|
|
nasid_index = 0;
|
|
|
|
/* Attempt to lock one of the BTE interfaces. */
|
|
while (nasid_index < MAX_NODES_TO_TRY) {
|
|
bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
|
|
|
|
if (bte == NULL) {
|
|
nasid_index++;
|
|
continue;
|
|
}
|
|
|
|
if (spin_trylock(&bte->spinlock)) {
|
|
if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
|
|
(BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
|
|
/* Got the lock but BTE still busy */
|
|
spin_unlock(&bte->spinlock);
|
|
} else {
|
|
/* we got the lock and it's not busy */
|
|
break;
|
|
}
|
|
}
|
|
|
|
bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
|
|
if (bte_if_index == bte_first) {
|
|
/*
|
|
* We've tried all interfaces on this node
|
|
*/
|
|
nasid_index++;
|
|
}
|
|
|
|
bte = NULL;
|
|
}
|
|
|
|
if (bte != NULL) {
|
|
break;
|
|
}
|
|
|
|
local_irq_restore(irq_flags);
|
|
|
|
if (!(mode & BTE_WACQUIRE)) {
|
|
return BTEFAIL_NOTAVAIL;
|
|
}
|
|
} while (1);
|
|
|
|
if (notification == NULL) {
|
|
/* User does not want to be notified. */
|
|
bte->most_rcnt_na = &bte->notify;
|
|
} else {
|
|
bte->most_rcnt_na = notification;
|
|
}
|
|
|
|
/* Calculate the number of cache lines to transfer. */
|
|
transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
|
|
|
|
/* Initialize the notification to a known value. */
|
|
*bte->most_rcnt_na = BTE_WORD_BUSY;
|
|
notif_phys_addr = (u64)bte->most_rcnt_na;
|
|
|
|
/* Set the source and destination registers */
|
|
BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
|
|
BTE_SRC_STORE(bte, src);
|
|
BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
|
|
BTE_DEST_STORE(bte, dest);
|
|
|
|
/* Set the notification register */
|
|
BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
|
|
BTE_NOTIF_STORE(bte, notif_phys_addr);
|
|
|
|
/* Initiate the transfer */
|
|
BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
|
|
bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
|
|
|
|
itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
|
|
|
|
spin_unlock_irqrestore(&bte->spinlock, irq_flags);
|
|
|
|
if (notification != NULL) {
|
|
return BTE_SUCCESS;
|
|
}
|
|
|
|
while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
|
|
cpu_relax();
|
|
if (ia64_get_itc() > itc_end) {
|
|
BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
|
|
NASID_GET(bte->bte_base_addr), bte->bte_num,
|
|
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
|
|
bte->bte_error_count++;
|
|
bte->bh_error = IBLS_ERROR;
|
|
bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
|
|
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
|
|
goto retry_bteop;
|
|
}
|
|
}
|
|
|
|
BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
|
|
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
|
|
|
|
if (transfer_stat & IBLS_ERROR) {
|
|
bte_status = transfer_stat & ~IBLS_ERROR;
|
|
} else {
|
|
bte_status = BTE_SUCCESS;
|
|
}
|
|
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
|
|
|
|
BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
|
|
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
|
|
|
|
return bte_status;
|
|
}
|
|
|
|
EXPORT_SYMBOL(bte_copy);
|
|
|
|
/*
|
|
* bte_unaligned_copy(src, dest, len, mode)
|
|
*
|
|
* use the block transfer engine to move kernel
|
|
* memory from src to dest using the assigned mode.
|
|
*
|
|
* Paramaters:
|
|
* src - physical address of the transfer source.
|
|
* dest - physical address of the transfer destination.
|
|
* len - number of bytes to transfer from source to dest.
|
|
* mode - hardware defined. See reference information
|
|
* for IBCT0/1 in the SGI documentation.
|
|
*
|
|
* NOTE: If the source, dest, and len are all cache line aligned,
|
|
* then it would be _FAR_ preferrable to use bte_copy instead.
|
|
*/
|
|
bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
|
|
{
|
|
int destFirstCacheOffset;
|
|
u64 headBteSource;
|
|
u64 headBteLen;
|
|
u64 headBcopySrcOffset;
|
|
u64 headBcopyDest;
|
|
u64 headBcopyLen;
|
|
u64 footBteSource;
|
|
u64 footBteLen;
|
|
u64 footBcopyDest;
|
|
u64 footBcopyLen;
|
|
bte_result_t rv;
|
|
char *bteBlock, *bteBlock_unaligned;
|
|
|
|
if (len == 0) {
|
|
return BTE_SUCCESS;
|
|
}
|
|
|
|
/* temporary buffer used during unaligned transfers */
|
|
bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES,
|
|
GFP_KERNEL | GFP_DMA);
|
|
if (bteBlock_unaligned == NULL) {
|
|
return BTEFAIL_NOTAVAIL;
|
|
}
|
|
bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
|
|
|
|
headBcopySrcOffset = src & L1_CACHE_MASK;
|
|
destFirstCacheOffset = dest & L1_CACHE_MASK;
|
|
|
|
/*
|
|
* At this point, the transfer is broken into
|
|
* (up to) three sections. The first section is
|
|
* from the start address to the first physical
|
|
* cache line, the second is from the first physical
|
|
* cache line to the last complete cache line,
|
|
* and the third is from the last cache line to the
|
|
* end of the buffer. The first and third sections
|
|
* are handled by bte copying into a temporary buffer
|
|
* and then bcopy'ing the necessary section into the
|
|
* final location. The middle section is handled with
|
|
* a standard bte copy.
|
|
*
|
|
* One nasty exception to the above rule is when the
|
|
* source and destination are not symetrically
|
|
* mis-aligned. If the source offset from the first
|
|
* cache line is different from the destination offset,
|
|
* we make the first section be the entire transfer
|
|
* and the bcopy the entire block into place.
|
|
*/
|
|
if (headBcopySrcOffset == destFirstCacheOffset) {
|
|
|
|
/*
|
|
* Both the source and destination are the same
|
|
* distance from a cache line boundary so we can
|
|
* use the bte to transfer the bulk of the
|
|
* data.
|
|
*/
|
|
headBteSource = src & ~L1_CACHE_MASK;
|
|
headBcopyDest = dest;
|
|
if (headBcopySrcOffset) {
|
|
headBcopyLen =
|
|
(len >
|
|
(L1_CACHE_BYTES -
|
|
headBcopySrcOffset) ? L1_CACHE_BYTES
|
|
- headBcopySrcOffset : len);
|
|
headBteLen = L1_CACHE_BYTES;
|
|
} else {
|
|
headBcopyLen = 0;
|
|
headBteLen = 0;
|
|
}
|
|
|
|
if (len > headBcopyLen) {
|
|
footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
|
|
footBteLen = L1_CACHE_BYTES;
|
|
|
|
footBteSource = src + len - footBcopyLen;
|
|
footBcopyDest = dest + len - footBcopyLen;
|
|
|
|
if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
|
|
/*
|
|
* We have two contigous bcopy
|
|
* blocks. Merge them.
|
|
*/
|
|
headBcopyLen += footBcopyLen;
|
|
headBteLen += footBteLen;
|
|
} else if (footBcopyLen > 0) {
|
|
rv = bte_copy(footBteSource,
|
|
ia64_tpa((unsigned long)bteBlock),
|
|
footBteLen, mode, NULL);
|
|
if (rv != BTE_SUCCESS) {
|
|
kfree(bteBlock_unaligned);
|
|
return rv;
|
|
}
|
|
|
|
memcpy(__va(footBcopyDest),
|
|
(char *)bteBlock, footBcopyLen);
|
|
}
|
|
} else {
|
|
footBcopyLen = 0;
|
|
footBteLen = 0;
|
|
}
|
|
|
|
if (len > (headBcopyLen + footBcopyLen)) {
|
|
/* now transfer the middle. */
|
|
rv = bte_copy((src + headBcopyLen),
|
|
(dest +
|
|
headBcopyLen),
|
|
(len - headBcopyLen -
|
|
footBcopyLen), mode, NULL);
|
|
if (rv != BTE_SUCCESS) {
|
|
kfree(bteBlock_unaligned);
|
|
return rv;
|
|
}
|
|
|
|
}
|
|
} else {
|
|
|
|
/*
|
|
* The transfer is not symetric, we will
|
|
* allocate a buffer large enough for all the
|
|
* data, bte_copy into that buffer and then
|
|
* bcopy to the destination.
|
|
*/
|
|
|
|
/* Add the leader from source */
|
|
headBteLen = len + (src & L1_CACHE_MASK);
|
|
/* Add the trailing bytes from footer. */
|
|
headBteLen += L1_CACHE_BYTES - (headBteLen & L1_CACHE_MASK);
|
|
headBteSource = src & ~L1_CACHE_MASK;
|
|
headBcopySrcOffset = src & L1_CACHE_MASK;
|
|
headBcopyDest = dest;
|
|
headBcopyLen = len;
|
|
}
|
|
|
|
if (headBcopyLen > 0) {
|
|
rv = bte_copy(headBteSource,
|
|
ia64_tpa((unsigned long)bteBlock), headBteLen,
|
|
mode, NULL);
|
|
if (rv != BTE_SUCCESS) {
|
|
kfree(bteBlock_unaligned);
|
|
return rv;
|
|
}
|
|
|
|
memcpy(__va(headBcopyDest), ((char *)bteBlock +
|
|
headBcopySrcOffset), headBcopyLen);
|
|
}
|
|
kfree(bteBlock_unaligned);
|
|
return BTE_SUCCESS;
|
|
}
|
|
|
|
EXPORT_SYMBOL(bte_unaligned_copy);
|
|
|
|
/************************************************************************
|
|
* Block Transfer Engine initialization functions.
|
|
*
|
|
***********************************************************************/
|
|
|
|
/*
|
|
* bte_init_node(nodepda, cnode)
|
|
*
|
|
* Initialize the nodepda structure with BTE base addresses and
|
|
* spinlocks.
|
|
*/
|
|
void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Indicate that all the block transfer engines on this node
|
|
* are available.
|
|
*/
|
|
|
|
/*
|
|
* Allocate one bte_recover_t structure per node. It holds
|
|
* the recovery lock for node. All the bte interface structures
|
|
* will point at this one bte_recover structure to get the lock.
|
|
*/
|
|
spin_lock_init(&mynodepda->bte_recovery_lock);
|
|
init_timer(&mynodepda->bte_recovery_timer);
|
|
mynodepda->bte_recovery_timer.function = bte_error_handler;
|
|
mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
|
|
|
|
for (i = 0; i < BTES_PER_NODE; i++) {
|
|
u64 *base_addr;
|
|
|
|
/* Which link status register should we use? */
|
|
base_addr = (u64 *)
|
|
REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
|
|
mynodepda->bte_if[i].bte_base_addr = base_addr;
|
|
mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
|
|
mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
|
|
mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
|
|
mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
|
|
|
|
/*
|
|
* Initialize the notification and spinlock
|
|
* so the first transfer can occur.
|
|
*/
|
|
mynodepda->bte_if[i].most_rcnt_na =
|
|
&(mynodepda->bte_if[i].notify);
|
|
mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
|
|
spin_lock_init(&mynodepda->bte_if[i].spinlock);
|
|
|
|
mynodepda->bte_if[i].bte_cnode = cnode;
|
|
mynodepda->bte_if[i].bte_error_count = 0;
|
|
mynodepda->bte_if[i].bte_num = i;
|
|
mynodepda->bte_if[i].cleanup_active = 0;
|
|
mynodepda->bte_if[i].bh_error = 0;
|
|
}
|
|
|
|
}
|