linux-stable-rt/drivers/net/wireless/zd1211rw/zd_mac.c

972 lines
26 KiB
C

/* ZD1211 USB-WLAN driver for Linux
*
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/usb.h>
#include <linux/jiffies.h>
#include <net/ieee80211_radiotap.h>
#include "zd_def.h"
#include "zd_chip.h"
#include "zd_mac.h"
#include "zd_ieee80211.h"
#include "zd_rf.h"
/* This table contains the hardware specific values for the modulation rates. */
static const struct ieee80211_rate zd_rates[] = {
{ .rate = 10,
.val = ZD_CCK_RATE_1M,
.flags = IEEE80211_RATE_CCK },
{ .rate = 20,
.val = ZD_CCK_RATE_2M,
.val2 = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_CCK_2 },
{ .rate = 55,
.val = ZD_CCK_RATE_5_5M,
.val2 = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_CCK_2 },
{ .rate = 110,
.val = ZD_CCK_RATE_11M,
.val2 = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_CCK_2 },
{ .rate = 60,
.val = ZD_OFDM_RATE_6M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 90,
.val = ZD_OFDM_RATE_9M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 120,
.val = ZD_OFDM_RATE_12M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 180,
.val = ZD_OFDM_RATE_18M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 240,
.val = ZD_OFDM_RATE_24M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 360,
.val = ZD_OFDM_RATE_36M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 480,
.val = ZD_OFDM_RATE_48M,
.flags = IEEE80211_RATE_OFDM },
{ .rate = 540,
.val = ZD_OFDM_RATE_54M,
.flags = IEEE80211_RATE_OFDM },
};
static const struct ieee80211_channel zd_channels[] = {
{ .chan = 1,
.freq = 2412},
{ .chan = 2,
.freq = 2417},
{ .chan = 3,
.freq = 2422},
{ .chan = 4,
.freq = 2427},
{ .chan = 5,
.freq = 2432},
{ .chan = 6,
.freq = 2437},
{ .chan = 7,
.freq = 2442},
{ .chan = 8,
.freq = 2447},
{ .chan = 9,
.freq = 2452},
{ .chan = 10,
.freq = 2457},
{ .chan = 11,
.freq = 2462},
{ .chan = 12,
.freq = 2467},
{ .chan = 13,
.freq = 2472},
{ .chan = 14,
.freq = 2484}
};
static void housekeeping_init(struct zd_mac *mac);
static void housekeeping_enable(struct zd_mac *mac);
static void housekeeping_disable(struct zd_mac *mac);
int zd_mac_preinit_hw(struct ieee80211_hw *hw)
{
int r;
u8 addr[ETH_ALEN];
struct zd_mac *mac = zd_hw_mac(hw);
r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
if (r)
return r;
SET_IEEE80211_PERM_ADDR(hw, addr);
return 0;
}
int zd_mac_init_hw(struct ieee80211_hw *hw)
{
int r;
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
u8 default_regdomain;
r = zd_chip_enable_int(chip);
if (r)
goto out;
r = zd_chip_init_hw(chip);
if (r)
goto disable_int;
ZD_ASSERT(!irqs_disabled());
r = zd_read_regdomain(chip, &default_regdomain);
if (r)
goto disable_int;
spin_lock_irq(&mac->lock);
mac->regdomain = mac->default_regdomain = default_regdomain;
spin_unlock_irq(&mac->lock);
/* We must inform the device that we are doing encryption/decryption in
* software at the moment. */
r = zd_set_encryption_type(chip, ENC_SNIFFER);
if (r)
goto disable_int;
zd_geo_init(hw, mac->regdomain);
r = 0;
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
void zd_mac_clear(struct zd_mac *mac)
{
flush_workqueue(zd_workqueue);
zd_chip_clear(&mac->chip);
ZD_ASSERT(!spin_is_locked(&mac->lock));
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
}
static int set_rx_filter(struct zd_mac *mac)
{
unsigned long flags;
u32 filter = STA_RX_FILTER;
spin_lock_irqsave(&mac->lock, flags);
if (mac->pass_ctrl)
filter |= RX_FILTER_CTRL;
spin_unlock_irqrestore(&mac->lock, flags);
return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
}
static int set_mc_hash(struct zd_mac *mac)
{
struct zd_mc_hash hash;
zd_mc_clear(&hash);
return zd_chip_set_multicast_hash(&mac->chip, &hash);
}
static int zd_op_start(struct ieee80211_hw *hw)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
struct zd_usb *usb = &chip->usb;
int r;
if (!usb->initialized) {
r = zd_usb_init_hw(usb);
if (r)
goto out;
}
r = zd_chip_enable_int(chip);
if (r < 0)
goto out;
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
if (r < 0)
goto disable_int;
r = set_rx_filter(mac);
if (r)
goto disable_int;
r = set_mc_hash(mac);
if (r)
goto disable_int;
r = zd_chip_switch_radio_on(chip);
if (r < 0)
goto disable_int;
r = zd_chip_enable_rxtx(chip);
if (r < 0)
goto disable_radio;
r = zd_chip_enable_hwint(chip);
if (r < 0)
goto disable_rxtx;
housekeeping_enable(mac);
return 0;
disable_rxtx:
zd_chip_disable_rxtx(chip);
disable_radio:
zd_chip_switch_radio_off(chip);
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
/**
* clear_tx_skb_control_block - clears the control block of tx skbuffs
* @skb: a &struct sk_buff pointer
*
* This clears the control block of skbuff buffers, which were transmitted to
* the device. Notify that the function is not thread-safe, so prevent
* multiple calls.
*/
static void clear_tx_skb_control_block(struct sk_buff *skb)
{
struct zd_tx_skb_control_block *cb =
(struct zd_tx_skb_control_block *)skb->cb;
kfree(cb->control);
cb->control = NULL;
}
/**
* kfree_tx_skb - frees a tx skbuff
* @skb: a &struct sk_buff pointer
*
* Frees the tx skbuff. Frees also the allocated control structure in the
* control block if necessary.
*/
static void kfree_tx_skb(struct sk_buff *skb)
{
clear_tx_skb_control_block(skb);
dev_kfree_skb_any(skb);
}
static void zd_op_stop(struct ieee80211_hw *hw)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
struct sk_buff *skb;
struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
/* The order here deliberately is a little different from the open()
* method, since we need to make sure there is no opportunity for RX
* frames to be processed by mac80211 after we have stopped it.
*/
zd_chip_disable_rxtx(chip);
housekeeping_disable(mac);
flush_workqueue(zd_workqueue);
zd_chip_disable_hwint(chip);
zd_chip_switch_radio_off(chip);
zd_chip_disable_int(chip);
while ((skb = skb_dequeue(ack_wait_queue)))
kfree_tx_skb(skb);
}
/**
* init_tx_skb_control_block - initializes skb control block
* @skb: a &sk_buff pointer
* @dev: pointer to the mac80221 device
* @control: mac80211 tx control applying for the frame in @skb
*
* Initializes the control block of the skbuff to be transmitted.
*/
static int init_tx_skb_control_block(struct sk_buff *skb,
struct ieee80211_hw *hw,
struct ieee80211_tx_control *control)
{
struct zd_tx_skb_control_block *cb =
(struct zd_tx_skb_control_block *)skb->cb;
ZD_ASSERT(sizeof(*cb) <= sizeof(skb->cb));
memset(cb, 0, sizeof(*cb));
cb->hw= hw;
cb->control = kmalloc(sizeof(*control), GFP_ATOMIC);
if (cb->control == NULL)
return -ENOMEM;
memcpy(cb->control, control, sizeof(*control));
return 0;
}
/**
* tx_status - reports tx status of a packet if required
* @hw - a &struct ieee80211_hw pointer
* @skb - a sk-buffer
* @status - the tx status of the packet without control information
* @success - True for successfull transmission of the frame
*
* This information calls ieee80211_tx_status_irqsafe() if required by the
* control information. It copies the control information into the status
* information.
*
* If no status information has been requested, the skb is freed.
*/
static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_tx_status *status,
bool success)
{
struct zd_tx_skb_control_block *cb = (struct zd_tx_skb_control_block *)
skb->cb;
ZD_ASSERT(cb->control != NULL);
memcpy(&status->control, cb->control, sizeof(status->control));
if (!success)
status->excessive_retries = 1;
clear_tx_skb_control_block(skb);
ieee80211_tx_status_irqsafe(hw, skb, status);
}
/**
* zd_mac_tx_failed - callback for failed frames
* @dev: the mac80211 wireless device
*
* This function is called if a frame couldn't be succesfully be
* transferred. The first frame from the tx queue, will be selected and
* reported as error to the upper layers.
*/
void zd_mac_tx_failed(struct ieee80211_hw *hw)
{
struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
struct sk_buff *skb;
struct ieee80211_tx_status status = {{0}};
skb = skb_dequeue(q);
if (skb == NULL)
return;
tx_status(hw, skb, &status, 0);
}
/**
* zd_mac_tx_to_dev - callback for USB layer
* @skb: a &sk_buff pointer
* @error: error value, 0 if transmission successful
*
* Informs the MAC layer that the frame has successfully transferred to the
* device. If an ACK is required and the transfer to the device has been
* successful, the packets are put on the @ack_wait_queue with
* the control set removed.
*/
void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
{
struct zd_tx_skb_control_block *cb =
(struct zd_tx_skb_control_block *)skb->cb;
struct ieee80211_hw *hw = cb->hw;
if (likely(cb->control)) {
skb_pull(skb, sizeof(struct zd_ctrlset));
if (unlikely(error ||
(cb->control->flags & IEEE80211_TXCTL_NO_ACK)))
{
struct ieee80211_tx_status status = {{0}};
tx_status(hw, skb, &status, !error);
} else {
struct sk_buff_head *q =
&zd_hw_mac(hw)->ack_wait_queue;
skb_queue_tail(q, skb);
while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
zd_mac_tx_failed(hw);
}
} else {
kfree_tx_skb(skb);
}
}
static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
{
/* ZD_PURE_RATE() must be used to remove the modulation type flag of
* the zd-rate values.
*/
static const u8 rate_divisor[] = {
[ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
[ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
/* Bits must be doubled. */
[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
[ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
[ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
[ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
};
u32 bits = (u32)tx_length * 8;
u32 divisor;
divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
if (divisor == 0)
return -EINVAL;
switch (zd_rate) {
case ZD_CCK_RATE_5_5M:
bits = (2*bits) + 10; /* round up to the next integer */
break;
case ZD_CCK_RATE_11M:
if (service) {
u32 t = bits % 11;
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
if (0 < t && t <= 3) {
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
}
}
bits += 10; /* round up to the next integer */
break;
}
return bits/divisor;
}
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
struct ieee80211_hdr *header, u32 flags)
{
u16 fctl = le16_to_cpu(header->frame_control);
/*
* CONTROL TODO:
* - if backoff needed, enable bit 0
* - if burst (backoff not needed) disable bit 0
*/
cs->control = 0;
/* First fragment */
if (flags & IEEE80211_TXCTL_FIRST_FRAGMENT)
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
/* Multicast */
if (is_multicast_ether_addr(header->addr1))
cs->control |= ZD_CS_MULTICAST;
/* PS-POLL */
if ((fctl & (IEEE80211_FCTL_FTYPE|IEEE80211_FCTL_STYPE)) ==
(IEEE80211_FTYPE_CTL|IEEE80211_STYPE_PSPOLL))
cs->control |= ZD_CS_PS_POLL_FRAME;
if (flags & IEEE80211_TXCTL_USE_RTS_CTS)
cs->control |= ZD_CS_RTS;
if (flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
cs->control |= ZD_CS_SELF_CTS;
/* FIXME: Management frame? */
}
static int fill_ctrlset(struct zd_mac *mac,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
int r;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
unsigned int frag_len = skb->len + FCS_LEN;
unsigned int packet_length;
struct zd_ctrlset *cs = (struct zd_ctrlset *)
skb_push(skb, sizeof(struct zd_ctrlset));
ZD_ASSERT(frag_len <= 0xffff);
cs->modulation = control->tx_rate;
cs->tx_length = cpu_to_le16(frag_len);
cs_set_control(mac, cs, hdr, control->flags);
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
ZD_ASSERT(packet_length <= 0xffff);
/* ZD1211B: Computing the length difference this way, gives us
* flexibility to compute the packet length.
*/
cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
packet_length - frag_len : packet_length);
/*
* CURRENT LENGTH:
* - transmit frame length in microseconds
* - seems to be derived from frame length
* - see Cal_Us_Service() in zdinlinef.h
* - if macp->bTxBurstEnable is enabled, then multiply by 4
* - bTxBurstEnable is never set in the vendor driver
*
* SERVICE:
* - "for PLCP configuration"
* - always 0 except in some situations at 802.11b 11M
* - see line 53 of zdinlinef.h
*/
cs->service = 0;
r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
le16_to_cpu(cs->tx_length));
if (r < 0)
return r;
cs->current_length = cpu_to_le16(r);
cs->next_frame_length = 0;
return 0;
}
/**
* zd_op_tx - transmits a network frame to the device
*
* @dev: mac80211 hardware device
* @skb: socket buffer
* @control: the control structure
*
* This function transmit an IEEE 802.11 network frame to the device. The
* control block of the skbuff will be initialized. If necessary the incoming
* mac80211 queues will be stopped.
*/
static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct zd_mac *mac = zd_hw_mac(hw);
int r;
r = fill_ctrlset(mac, skb, control);
if (r)
return r;
r = init_tx_skb_control_block(skb, hw, control);
if (r)
return r;
r = zd_usb_tx(&mac->chip.usb, skb);
if (r) {
clear_tx_skb_control_block(skb);
return r;
}
return 0;
}
/**
* filter_ack - filters incoming packets for acknowledgements
* @dev: the mac80211 device
* @rx_hdr: received header
* @stats: the status for the received packet
*
* This functions looks for ACK packets and tries to match them with the
* frames in the tx queue. If a match is found the frame will be dequeued and
* the upper layers is informed about the successful transmission. If
* mac80211 queues have been stopped and the number of frames still to be
* transmitted is low the queues will be opened again.
*
* Returns 1 if the frame was an ACK, 0 if it was ignored.
*/
static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
struct ieee80211_rx_status *stats)
{
u16 fc = le16_to_cpu(rx_hdr->frame_control);
struct sk_buff *skb;
struct sk_buff_head *q;
unsigned long flags;
if ((fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) !=
(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK))
return 0;
q = &zd_hw_mac(hw)->ack_wait_queue;
spin_lock_irqsave(&q->lock, flags);
for (skb = q->next; skb != (struct sk_buff *)q; skb = skb->next) {
struct ieee80211_hdr *tx_hdr;
tx_hdr = (struct ieee80211_hdr *)skb->data;
if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
{
struct ieee80211_tx_status status = {{0}};
status.flags = IEEE80211_TX_STATUS_ACK;
status.ack_signal = stats->ssi;
__skb_unlink(skb, q);
tx_status(hw, skb, &status, 1);
goto out;
}
}
out:
spin_unlock_irqrestore(&q->lock, flags);
return 1;
}
int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct ieee80211_rx_status stats;
const struct rx_status *status;
struct sk_buff *skb;
int bad_frame = 0;
if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
FCS_LEN + sizeof(struct rx_status))
return -EINVAL;
memset(&stats, 0, sizeof(stats));
/* Note about pass_failed_fcs and pass_ctrl access below:
* mac locking intentionally omitted here, as this is the only unlocked
* reader and the only writer is configure_filter. Plus, if there were
* any races accessing these variables, it wouldn't really matter.
* If mac80211 ever provides a way for us to access filter flags
* from outside configure_filter, we could improve on this. Also, this
* situation may change once we implement some kind of DMA-into-skb
* RX path. */
/* Caller has to ensure that length >= sizeof(struct rx_status). */
status = (struct rx_status *)
(buffer + (length - sizeof(struct rx_status)));
if (status->frame_status & ZD_RX_ERROR) {
if (mac->pass_failed_fcs &&
(status->frame_status & ZD_RX_CRC32_ERROR)) {
stats.flag |= RX_FLAG_FAILED_FCS_CRC;
bad_frame = 1;
} else {
return -EINVAL;
}
}
stats.channel = _zd_chip_get_channel(&mac->chip);
stats.freq = zd_channels[stats.channel - 1].freq;
stats.phymode = MODE_IEEE80211G;
stats.ssi = status->signal_strength;
stats.signal = zd_rx_qual_percent(buffer,
length - sizeof(struct rx_status),
status);
stats.rate = zd_rx_rate(buffer, status);
length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
buffer += ZD_PLCP_HEADER_SIZE;
/* Except for bad frames, filter each frame to see if it is an ACK, in
* which case our internal TX tracking is updated. Normally we then
* bail here as there's no need to pass ACKs on up to the stack, but
* there is also the case where the stack has requested us to pass
* control frames on up (pass_ctrl) which we must consider. */
if (!bad_frame &&
filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
&& !mac->pass_ctrl)
return 0;
skb = dev_alloc_skb(length);
if (skb == NULL)
return -ENOMEM;
memcpy(skb_put(skb, length), buffer, length);
ieee80211_rx_irqsafe(hw, skb, &stats);
return 0;
}
static int zd_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct zd_mac *mac = zd_hw_mac(hw);
/* using IEEE80211_IF_TYPE_INVALID to indicate no mode selected */
if (mac->type != IEEE80211_IF_TYPE_INVALID)
return -EOPNOTSUPP;
switch (conf->type) {
case IEEE80211_IF_TYPE_MNTR:
case IEEE80211_IF_TYPE_STA:
mac->type = conf->type;
break;
default:
return -EOPNOTSUPP;
}
return zd_write_mac_addr(&mac->chip, conf->mac_addr);
}
static void zd_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct zd_mac *mac = zd_hw_mac(hw);
mac->type = IEEE80211_IF_TYPE_INVALID;
zd_write_mac_addr(&mac->chip, NULL);
}
static int zd_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
{
struct zd_mac *mac = zd_hw_mac(hw);
return zd_chip_set_channel(&mac->chip, conf->channel);
}
static int zd_op_config_interface(struct ieee80211_hw *hw, int if_id,
struct ieee80211_if_conf *conf)
{
struct zd_mac *mac = zd_hw_mac(hw);
spin_lock_irq(&mac->lock);
mac->associated = is_valid_ether_addr(conf->bssid);
spin_unlock_irq(&mac->lock);
/* TODO: do hardware bssid filtering */
return 0;
}
static void set_multicast_hash_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_multicast_hash_work);
struct zd_mc_hash hash;
spin_lock_irq(&mac->lock);
hash = mac->multicast_hash;
spin_unlock_irq(&mac->lock);
zd_chip_set_multicast_hash(&mac->chip, &hash);
}
static void set_rx_filter_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_rx_filter_work);
int r;
dev_dbg_f(zd_mac_dev(mac), "\n");
r = set_rx_filter(mac);
if (r)
dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
}
#define SUPPORTED_FIF_FLAGS \
(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
FIF_OTHER_BSS)
static void zd_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
int mc_count, struct dev_mc_list *mclist)
{
struct zd_mc_hash hash;
struct zd_mac *mac = zd_hw_mac(hw);
unsigned long flags;
int i;
/* Only deal with supported flags */
changed_flags &= SUPPORTED_FIF_FLAGS;
*new_flags &= SUPPORTED_FIF_FLAGS;
/* changed_flags is always populated but this driver
* doesn't support all FIF flags so its possible we don't
* need to do anything */
if (!changed_flags)
return;
if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
zd_mc_add_all(&hash);
} else {
DECLARE_MAC_BUF(macbuf);
zd_mc_clear(&hash);
for (i = 0; i < mc_count; i++) {
if (!mclist)
break;
dev_dbg_f(zd_mac_dev(mac), "mc addr %s\n",
print_mac(macbuf, mclist->dmi_addr));
zd_mc_add_addr(&hash, mclist->dmi_addr);
mclist = mclist->next;
}
}
spin_lock_irqsave(&mac->lock, flags);
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
mac->multicast_hash = hash;
spin_unlock_irqrestore(&mac->lock, flags);
queue_work(zd_workqueue, &mac->set_multicast_hash_work);
if (changed_flags & FIF_CONTROL)
queue_work(zd_workqueue, &mac->set_rx_filter_work);
/* no handling required for FIF_OTHER_BSS as we don't currently
* do BSSID filtering */
/* FIXME: in future it would be nice to enable the probe response
* filter (so that the driver doesn't see them) until
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
* have to schedule work to enable prbresp reception, which might
* happen too late. For now we'll just listen and forward them all the
* time. */
}
static void set_rts_cts_work(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_rts_cts_work);
unsigned long flags;
unsigned int short_preamble;
mutex_lock(&mac->chip.mutex);
spin_lock_irqsave(&mac->lock, flags);
mac->updating_rts_rate = 0;
short_preamble = mac->short_preamble;
spin_unlock_irqrestore(&mac->lock, flags);
zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
mutex_unlock(&mac->chip.mutex);
}
static void zd_op_erp_ie_changed(struct ieee80211_hw *hw, u8 changes,
int cts_protection, int preamble)
{
struct zd_mac *mac = zd_hw_mac(hw);
unsigned long flags;
dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
if (changes & IEEE80211_ERP_CHANGE_PREAMBLE) {
spin_lock_irqsave(&mac->lock, flags);
mac->short_preamble = !preamble;
if (!mac->updating_rts_rate) {
mac->updating_rts_rate = 1;
/* FIXME: should disable TX here, until work has
* completed and RTS_CTS reg is updated */
queue_work(zd_workqueue, &mac->set_rts_cts_work);
}
spin_unlock_irqrestore(&mac->lock, flags);
}
}
static const struct ieee80211_ops zd_ops = {
.tx = zd_op_tx,
.start = zd_op_start,
.stop = zd_op_stop,
.add_interface = zd_op_add_interface,
.remove_interface = zd_op_remove_interface,
.config = zd_op_config,
.config_interface = zd_op_config_interface,
.configure_filter = zd_op_configure_filter,
.erp_ie_changed = zd_op_erp_ie_changed,
};
struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
{
struct zd_mac *mac;
struct ieee80211_hw *hw;
int i;
hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
if (!hw) {
dev_dbg_f(&intf->dev, "out of memory\n");
return NULL;
}
mac = zd_hw_mac(hw);
memset(mac, 0, sizeof(*mac));
spin_lock_init(&mac->lock);
mac->hw = hw;
mac->type = IEEE80211_IF_TYPE_INVALID;
memcpy(mac->channels, zd_channels, sizeof(zd_channels));
memcpy(mac->rates, zd_rates, sizeof(zd_rates));
mac->modes[0].mode = MODE_IEEE80211G;
mac->modes[0].num_rates = ARRAY_SIZE(zd_rates);
mac->modes[0].rates = mac->rates;
mac->modes[0].num_channels = ARRAY_SIZE(zd_channels);
mac->modes[0].channels = mac->channels;
mac->modes[1].mode = MODE_IEEE80211B;
mac->modes[1].num_rates = 4;
mac->modes[1].rates = mac->rates;
mac->modes[1].num_channels = ARRAY_SIZE(zd_channels);
mac->modes[1].channels = mac->channels;
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED;
hw->max_rssi = 100;
hw->max_signal = 100;
hw->queues = 1;
hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
skb_queue_head_init(&mac->ack_wait_queue);
for (i = 0; i < 2; i++) {
if (ieee80211_register_hwmode(hw, &mac->modes[i])) {
dev_dbg_f(&intf->dev, "cannot register hwmode\n");
ieee80211_free_hw(hw);
return NULL;
}
}
zd_chip_init(&mac->chip, hw, intf);
housekeeping_init(mac);
INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
SET_IEEE80211_DEV(hw, &intf->dev);
return hw;
}
#define LINK_LED_WORK_DELAY HZ
static void link_led_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, housekeeping.link_led_work.work);
struct zd_chip *chip = &mac->chip;
int is_associated;
int r;
spin_lock_irq(&mac->lock);
is_associated = mac->associated;
spin_unlock_irq(&mac->lock);
r = zd_chip_control_leds(chip,
is_associated ? LED_ASSOCIATED : LED_SCANNING);
if (r)
dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
LINK_LED_WORK_DELAY);
}
static void housekeeping_init(struct zd_mac *mac)
{
INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
}
static void housekeeping_enable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
0);
}
static void housekeeping_disable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
cancel_rearming_delayed_workqueue(zd_workqueue,
&mac->housekeeping.link_led_work);
zd_chip_control_leds(&mac->chip, LED_OFF);
}