linux-stable-rt/kernel/rcutree_plugin.h

567 lines
16 KiB
C

/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Internal non-public definitions that provide either classic
* or preemptable semantics.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright Red Hat, 2009
* Copyright IBM Corporation, 2009
*
* Author: Ingo Molnar <mingo@elte.hu>
* Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
#ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
/*
* Tell them what RCU they are running.
*/
static inline void rcu_bootup_announce(void)
{
printk(KERN_INFO
"Experimental preemptable hierarchical RCU implementation.\n");
}
/*
* Return the number of RCU-preempt batches processed thus far
* for debug and statistics.
*/
long rcu_batches_completed_preempt(void)
{
return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
/*
* Return the number of RCU batches processed thus far for debug & stats.
*/
long rcu_batches_completed(void)
{
return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);
/*
* Record a preemptable-RCU quiescent state for the specified CPU. Note
* that this just means that the task currently running on the CPU is
* not in a quiescent state. There might be any number of tasks blocked
* while in an RCU read-side critical section.
*/
static void rcu_preempt_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
rdp->passed_quiesc_completed = rdp->completed;
barrier();
rdp->passed_quiesc = 1;
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the appropriate entry
* of the blocked_tasks[] array. The task will dequeue itself when
* it exits the outermost enclosing RCU read-side critical section.
* Therefore, the current grace period cannot be permitted to complete
* until the blocked_tasks[] entry indexed by the low-order bit of
* rnp->gpnum empties.
*
* Caller must disable preemption.
*/
static void rcu_preempt_note_context_switch(int cpu)
{
struct task_struct *t = current;
unsigned long flags;
int phase;
struct rcu_data *rdp;
struct rcu_node *rnp;
if (t->rcu_read_lock_nesting &&
(t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
/* Possibly blocking in an RCU read-side critical section. */
rdp = rcu_preempt_state.rda[cpu];
rnp = rdp->mynode;
spin_lock_irqsave(&rnp->lock, flags);
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
t->rcu_blocked_node = rnp;
/*
* If this CPU has already checked in, then this task
* will hold up the next grace period rather than the
* current grace period. Queue the task accordingly.
* If the task is queued for the current grace period
* (i.e., this CPU has not yet passed through a quiescent
* state for the current grace period), then as long
* as that task remains queued, the current grace period
* cannot end.
*
* But first, note that the current CPU must still be
* on line!
*/
WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Either we were not in an RCU read-side critical section to
* begin with, or we have now recorded that critical section
* globally. Either way, we can now note a quiescent state
* for this CPU. Again, if we were in an RCU read-side critical
* section, and if that critical section was blocking the current
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
rcu_preempt_qs(cpu);
local_irq_save(flags);
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
local_irq_restore(flags);
}
/*
* Tree-preemptable RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
ACCESS_ONCE(current->rcu_read_lock_nesting)++;
barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
static void rcu_read_unlock_special(struct task_struct *t)
{
int empty;
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp;
int special;
/* NMI handlers cannot block and cannot safely manipulate state. */
if (in_nmi())
return;
local_irq_save(flags);
/*
* If RCU core is waiting for this CPU to exit critical section,
* let it know that we have done so.
*/
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
rcu_preempt_qs(smp_processor_id());
}
/* Hardware IRQ handlers cannot block. */
if (in_irq()) {
local_irq_restore(flags);
return;
}
/* Clean up if blocked during RCU read-side critical section. */
if (special & RCU_READ_UNLOCK_BLOCKED) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
/*
* Remove this task from the list it blocked on. The
* task can migrate while we acquire the lock, but at
* most one time. So at most two passes through loop.
*/
for (;;) {
rnp = t->rcu_blocked_node;
spin_lock(&rnp->lock); /* irqs already disabled. */
if (rnp == t->rcu_blocked_node)
break;
spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
list_del_init(&t->rcu_node_entry);
t->rcu_blocked_node = NULL;
/*
* If this was the last task on the current list, and if
* we aren't waiting on any CPUs, report the quiescent state.
* Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
* drop rnp->lock and restore irq.
*/
if (!empty && rnp->qsmask == 0 &&
list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
struct rcu_node *rnp_p;
if (rnp->parent == NULL) {
/* Only one rcu_node in the tree. */
cpu_quiet_msk_finish(&rcu_preempt_state, flags);
return;
}
/* Report up the rest of the hierarchy. */
mask = rnp->grpmask;
spin_unlock_irqrestore(&rnp->lock, flags);
rnp_p = rnp->parent;
spin_lock_irqsave(&rnp_p->lock, flags);
WARN_ON_ONCE(rnp->qsmask);
cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
return;
}
spin_unlock(&rnp->lock);
}
local_irq_restore(flags);
}
/*
* Tree-preemptable RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
rcu_read_unlock_special(t);
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
/*
* Scan the current list of tasks blocked within RCU read-side critical
* sections, printing out the tid of each.
*/
static void rcu_print_task_stall(struct rcu_node *rnp)
{
unsigned long flags;
struct list_head *lp;
int phase = rnp->gpnum & 0x1;
struct task_struct *t;
if (!list_empty(&rnp->blocked_tasks[phase])) {
spin_lock_irqsave(&rnp->lock, flags);
phase = rnp->gpnum & 0x1; /* re-read under lock. */
lp = &rnp->blocked_tasks[phase];
list_for_each_entry(t, lp, rcu_node_entry)
printk(" P%d", t->pid);
spin_unlock_irqrestore(&rnp->lock, flags);
}
}
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
* must be held by the caller.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]));
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check for preempted RCU readers for the specified rcu_node structure.
* If the caller needs a reliable answer, it must hold the rcu_node's
* >lock.
*/
static int rcu_preempted_readers(struct rcu_node *rnp)
{
return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Handle tasklist migration for case in which all CPUs covered by the
* specified rcu_node have gone offline. Move them up to the root
* rcu_node. The reason for not just moving them to the immediate
* parent is to remove the need for rcu_read_unlock_special() to
* make more than two attempts to acquire the target rcu_node's lock.
*
* The caller must hold rnp->lock with irqs disabled.
*/
static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp,
struct rcu_data *rdp)
{
int i;
struct list_head *lp;
struct list_head *lp_root;
struct rcu_node *rnp_root = rcu_get_root(rsp);
struct task_struct *tp;
if (rnp == rnp_root) {
WARN_ONCE(1, "Last CPU thought to be offlined?");
return; /* Shouldn't happen: at least one CPU online. */
}
WARN_ON_ONCE(rnp != rdp->mynode &&
(!list_empty(&rnp->blocked_tasks[0]) ||
!list_empty(&rnp->blocked_tasks[1])));
/*
* Move tasks up to root rcu_node. Rely on the fact that the
* root rcu_node can be at most one ahead of the rest of the
* rcu_nodes in terms of gp_num value. This fact allows us to
* move the blocked_tasks[] array directly, element by element.
*/
for (i = 0; i < 2; i++) {
lp = &rnp->blocked_tasks[i];
lp_root = &rnp_root->blocked_tasks[i];
while (!list_empty(lp)) {
tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
spin_lock(&rnp_root->lock); /* irqs already disabled */
list_del(&tp->rcu_node_entry);
tp->rcu_blocked_node = rnp_root;
list_add(&tp->rcu_node_entry, lp_root);
spin_unlock(&rnp_root->lock); /* irqs remain disabled */
}
}
}
/*
* Do CPU-offline processing for preemptable RCU.
*/
static void rcu_preempt_offline_cpu(int cpu)
{
__rcu_offline_cpu(cpu, &rcu_preempt_state);
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Check for a quiescent state from the current CPU. When a task blocks,
* the task is recorded in the corresponding CPU's rcu_node structure,
* which is checked elsewhere.
*
* Caller must disable hard irqs.
*/
static void rcu_preempt_check_callbacks(int cpu)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
rcu_preempt_qs(cpu);
return;
}
if (per_cpu(rcu_preempt_data, cpu).qs_pending)
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}
/*
* Process callbacks for preemptable RCU.
*/
static void rcu_preempt_process_callbacks(void)
{
__rcu_process_callbacks(&rcu_preempt_state,
&__get_cpu_var(rcu_preempt_data));
}
/*
* Queue a preemptable-RCU callback for invocation after a grace period.
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);
/*
* Check to see if there is any immediate preemptable-RCU-related work
* to be done.
*/
static int rcu_preempt_pending(int cpu)
{
return __rcu_pending(&rcu_preempt_state,
&per_cpu(rcu_preempt_data, cpu));
}
/*
* Does preemptable RCU need the CPU to stay out of dynticks mode?
*/
static int rcu_preempt_needs_cpu(int cpu)
{
return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}
/*
* Initialize preemptable RCU's per-CPU data.
*/
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}
/*
* Check for a task exiting while in a preemptable-RCU read-side
* critical section, clean up if so. No need to issue warnings,
* as debug_check_no_locks_held() already does this if lockdep
* is enabled.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0)
return;
t->rcu_read_lock_nesting = 1;
rcu_read_unlock();
}
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
/*
* Tell them what RCU they are running.
*/
static inline void rcu_bootup_announce(void)
{
printk(KERN_INFO "Hierarchical RCU implementation.\n");
}
/*
* Return the number of RCU batches processed thus far for debug & stats.
*/
long rcu_batches_completed(void)
{
return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);
/*
* Because preemptable RCU does not exist, we never have to check for
* CPUs being in quiescent states.
*/
static void rcu_preempt_note_context_switch(int cpu)
{
}
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
/*
* Because preemptable RCU does not exist, we never have to check for
* tasks blocked within RCU read-side critical sections.
*/
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* Because there is no preemptable RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Because preemptable RCU does not exist, there are never any preempted
* RCU readers.
*/
static int rcu_preempted_readers(struct rcu_node *rnp)
{
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Because preemptable RCU does not exist, it never needs to migrate
* tasks that were blocked within RCU read-side critical sections.
*/
static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp,
struct rcu_data *rdp)
{
}
/*
* Because preemptable RCU does not exist, it never needs CPU-offline
* processing.
*/
static void rcu_preempt_offline_cpu(int cpu)
{
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Because preemptable RCU does not exist, it never has any callbacks
* to check.
*/
void rcu_preempt_check_callbacks(int cpu)
{
}
/*
* Because preemptable RCU does not exist, it never has any callbacks
* to process.
*/
void rcu_preempt_process_callbacks(void)
{
}
/*
* In classic RCU, call_rcu() is just call_rcu_sched().
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
call_rcu_sched(head, func);
}
EXPORT_SYMBOL_GPL(call_rcu);
/*
* Because preemptable RCU does not exist, it never has any work to do.
*/
static int rcu_preempt_pending(int cpu)
{
return 0;
}
/*
* Because preemptable RCU does not exist, it never needs any CPU.
*/
static int rcu_preempt_needs_cpu(int cpu)
{
return 0;
}
/*
* Because preemptable RCU does not exist, there is no per-CPU
* data to initialize.
*/
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */