743 lines
16 KiB
C
743 lines
16 KiB
C
/*
|
|
* linux/arch/m32r/kernel/ptrace.c
|
|
*
|
|
* Copyright (C) 2002 Hirokazu Takata, Takeo Takahashi
|
|
* Copyright (C) 2004 Hirokazu Takata, Kei Sakamoto
|
|
*
|
|
* Original x86 implementation:
|
|
* By Ross Biro 1/23/92
|
|
* edited by Linus Torvalds
|
|
*
|
|
* Some code taken from sh version:
|
|
* Copyright (C) 1999, 2000 Kaz Kojima & Niibe Yutaka
|
|
* Some code taken from arm version:
|
|
* Copyright (C) 2000 Russell King
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/string.h>
|
|
#include <linux/signal.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
/*
|
|
* This routine will get a word off of the process kernel stack.
|
|
*/
|
|
static inline unsigned long int
|
|
get_stack_long(struct task_struct *task, int offset)
|
|
{
|
|
unsigned long *stack;
|
|
|
|
stack = (unsigned long *)task_pt_regs(task);
|
|
|
|
return stack[offset];
|
|
}
|
|
|
|
/*
|
|
* This routine will put a word on the process kernel stack.
|
|
*/
|
|
static inline int
|
|
put_stack_long(struct task_struct *task, int offset, unsigned long data)
|
|
{
|
|
unsigned long *stack;
|
|
|
|
stack = (unsigned long *)task_pt_regs(task);
|
|
stack[offset] = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int reg_offset[] = {
|
|
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
|
|
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
|
|
};
|
|
|
|
/*
|
|
* Read the word at offset "off" into the "struct user". We
|
|
* actually access the pt_regs stored on the kernel stack.
|
|
*/
|
|
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long __user *data)
|
|
{
|
|
unsigned long tmp;
|
|
#ifndef NO_FPU
|
|
struct user * dummy = NULL;
|
|
#endif
|
|
|
|
if ((off & 3) || (off < 0) || (off > sizeof(struct user) - 3))
|
|
return -EIO;
|
|
|
|
off >>= 2;
|
|
switch (off) {
|
|
case PT_EVB:
|
|
__asm__ __volatile__ (
|
|
"mvfc %0, cr5 \n\t"
|
|
: "=r" (tmp)
|
|
);
|
|
break;
|
|
case PT_CBR: {
|
|
unsigned long psw;
|
|
psw = get_stack_long(tsk, PT_PSW);
|
|
tmp = ((psw >> 8) & 1);
|
|
}
|
|
break;
|
|
case PT_PSW: {
|
|
unsigned long psw, bbpsw;
|
|
psw = get_stack_long(tsk, PT_PSW);
|
|
bbpsw = get_stack_long(tsk, PT_BBPSW);
|
|
tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
|
|
}
|
|
break;
|
|
case PT_PC:
|
|
tmp = get_stack_long(tsk, PT_BPC);
|
|
break;
|
|
case PT_BPC:
|
|
off = PT_BBPC;
|
|
/* fall through */
|
|
default:
|
|
if (off < (sizeof(struct pt_regs) >> 2))
|
|
tmp = get_stack_long(tsk, off);
|
|
#ifndef NO_FPU
|
|
else if (off >= (long)(&dummy->fpu >> 2) &&
|
|
off < (long)(&dummy->u_fpvalid >> 2)) {
|
|
if (!tsk_used_math(tsk)) {
|
|
if (off == (long)(&dummy->fpu.fpscr >> 2))
|
|
tmp = FPSCR_INIT;
|
|
else
|
|
tmp = 0;
|
|
} else
|
|
tmp = ((long *)(&tsk->thread.fpu >> 2))
|
|
[off - (long)&dummy->fpu];
|
|
} else if (off == (long)(&dummy->u_fpvalid >> 2))
|
|
tmp = !!tsk_used_math(tsk);
|
|
#endif /* not NO_FPU */
|
|
else
|
|
tmp = 0;
|
|
}
|
|
|
|
return put_user(tmp, data);
|
|
}
|
|
|
|
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long data)
|
|
{
|
|
int ret = -EIO;
|
|
#ifndef NO_FPU
|
|
struct user * dummy = NULL;
|
|
#endif
|
|
|
|
if ((off & 3) || off < 0 ||
|
|
off > sizeof(struct user) - 3)
|
|
return -EIO;
|
|
|
|
off >>= 2;
|
|
switch (off) {
|
|
case PT_EVB:
|
|
case PT_BPC:
|
|
case PT_SPI:
|
|
/* We don't allow to modify evb. */
|
|
ret = 0;
|
|
break;
|
|
case PT_PSW:
|
|
case PT_CBR: {
|
|
/* We allow to modify only cbr in psw */
|
|
unsigned long psw;
|
|
psw = get_stack_long(tsk, PT_PSW);
|
|
psw = (psw & ~0x100) | ((data & 1) << 8);
|
|
ret = put_stack_long(tsk, PT_PSW, psw);
|
|
}
|
|
break;
|
|
case PT_PC:
|
|
off = PT_BPC;
|
|
data &= ~1;
|
|
/* fall through */
|
|
default:
|
|
if (off < (sizeof(struct pt_regs) >> 2))
|
|
ret = put_stack_long(tsk, off, data);
|
|
#ifndef NO_FPU
|
|
else if (off >= (long)(&dummy->fpu >> 2) &&
|
|
off < (long)(&dummy->u_fpvalid >> 2)) {
|
|
set_stopped_child_used_math(tsk);
|
|
((long *)&tsk->thread.fpu)
|
|
[off - (long)&dummy->fpu] = data;
|
|
ret = 0;
|
|
} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
|
|
conditional_stopped_child_used_math(data, tsk);
|
|
ret = 0;
|
|
}
|
|
#endif /* not NO_FPU */
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get all user integer registers.
|
|
*/
|
|
static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set all user integer registers.
|
|
*/
|
|
static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
|
|
{
|
|
struct pt_regs newregs;
|
|
int ret;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
*regs = newregs;
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static inline int
|
|
check_condition_bit(struct task_struct *child)
|
|
{
|
|
return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
|
|
}
|
|
|
|
static int
|
|
check_condition_src(unsigned long op, unsigned long regno1,
|
|
unsigned long regno2, struct task_struct *child)
|
|
{
|
|
unsigned long reg1, reg2;
|
|
|
|
reg2 = get_stack_long(child, reg_offset[regno2]);
|
|
|
|
switch (op) {
|
|
case 0x0: /* BEQ */
|
|
reg1 = get_stack_long(child, reg_offset[regno1]);
|
|
return reg1 == reg2;
|
|
case 0x1: /* BNE */
|
|
reg1 = get_stack_long(child, reg_offset[regno1]);
|
|
return reg1 != reg2;
|
|
case 0x8: /* BEQZ */
|
|
return reg2 == 0;
|
|
case 0x9: /* BNEZ */
|
|
return reg2 != 0;
|
|
case 0xa: /* BLTZ */
|
|
return (int)reg2 < 0;
|
|
case 0xb: /* BGEZ */
|
|
return (int)reg2 >= 0;
|
|
case 0xc: /* BLEZ */
|
|
return (int)reg2 <= 0;
|
|
case 0xd: /* BGTZ */
|
|
return (int)reg2 > 0;
|
|
default:
|
|
/* never reached */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
|
|
unsigned long *next_pc,
|
|
struct task_struct *child)
|
|
{
|
|
unsigned long op, op2, op3;
|
|
unsigned long disp;
|
|
unsigned long regno;
|
|
int parallel = 0;
|
|
|
|
if (insn & 0x00008000)
|
|
parallel = 1;
|
|
if (pc & 3)
|
|
insn &= 0x7fff; /* right slot */
|
|
else
|
|
insn >>= 16; /* left slot */
|
|
|
|
op = (insn >> 12) & 0xf;
|
|
op2 = (insn >> 8) & 0xf;
|
|
op3 = (insn >> 4) & 0xf;
|
|
|
|
if (op == 0x7) {
|
|
switch (op2) {
|
|
case 0xd: /* BNC */
|
|
case 0x9: /* BNCL */
|
|
if (!check_condition_bit(child)) {
|
|
disp = (long)(insn << 24) >> 22;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
break;
|
|
case 0x8: /* BCL */
|
|
case 0xc: /* BC */
|
|
if (check_condition_bit(child)) {
|
|
disp = (long)(insn << 24) >> 22;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
break;
|
|
case 0xe: /* BL */
|
|
case 0xf: /* BRA */
|
|
disp = (long)(insn << 24) >> 22;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
break;
|
|
}
|
|
} else if (op == 0x1) {
|
|
switch (op2) {
|
|
case 0x0:
|
|
if (op3 == 0xf) { /* TRAP */
|
|
#if 1
|
|
/* pass through */
|
|
#else
|
|
/* kernel space is not allowed as next_pc */
|
|
unsigned long evb;
|
|
unsigned long trapno;
|
|
trapno = insn & 0xf;
|
|
__asm__ __volatile__ (
|
|
"mvfc %0, cr5\n"
|
|
:"=r"(evb)
|
|
:
|
|
);
|
|
*next_pc = evb + (trapno << 2);
|
|
return;
|
|
#endif
|
|
} else if (op3 == 0xd) { /* RTE */
|
|
*next_pc = get_stack_long(child, PT_BPC);
|
|
return;
|
|
}
|
|
break;
|
|
case 0xc: /* JC */
|
|
if (op3 == 0xc && check_condition_bit(child)) {
|
|
regno = insn & 0xf;
|
|
*next_pc = get_stack_long(child,
|
|
reg_offset[regno]);
|
|
return;
|
|
}
|
|
break;
|
|
case 0xd: /* JNC */
|
|
if (op3 == 0xc && !check_condition_bit(child)) {
|
|
regno = insn & 0xf;
|
|
*next_pc = get_stack_long(child,
|
|
reg_offset[regno]);
|
|
return;
|
|
}
|
|
break;
|
|
case 0xe: /* JL */
|
|
case 0xf: /* JMP */
|
|
if (op3 == 0xc) { /* JMP */
|
|
regno = insn & 0xf;
|
|
*next_pc = get_stack_long(child,
|
|
reg_offset[regno]);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (parallel)
|
|
*next_pc = pc + 4;
|
|
else
|
|
*next_pc = pc + 2;
|
|
}
|
|
|
|
static void
|
|
compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
|
|
unsigned long *next_pc,
|
|
struct task_struct *child)
|
|
{
|
|
unsigned long op;
|
|
unsigned long op2;
|
|
unsigned long disp;
|
|
unsigned long regno1, regno2;
|
|
|
|
op = (insn >> 28) & 0xf;
|
|
if (op == 0xf) { /* branch 24-bit relative */
|
|
op2 = (insn >> 24) & 0xf;
|
|
switch (op2) {
|
|
case 0xd: /* BNC */
|
|
case 0x9: /* BNCL */
|
|
if (!check_condition_bit(child)) {
|
|
disp = (long)(insn << 8) >> 6;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
break;
|
|
case 0x8: /* BCL */
|
|
case 0xc: /* BC */
|
|
if (check_condition_bit(child)) {
|
|
disp = (long)(insn << 8) >> 6;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
break;
|
|
case 0xe: /* BL */
|
|
case 0xf: /* BRA */
|
|
disp = (long)(insn << 8) >> 6;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
} else if (op == 0xb) { /* branch 16-bit relative */
|
|
op2 = (insn >> 20) & 0xf;
|
|
switch (op2) {
|
|
case 0x0: /* BEQ */
|
|
case 0x1: /* BNE */
|
|
case 0x8: /* BEQZ */
|
|
case 0x9: /* BNEZ */
|
|
case 0xa: /* BLTZ */
|
|
case 0xb: /* BGEZ */
|
|
case 0xc: /* BLEZ */
|
|
case 0xd: /* BGTZ */
|
|
regno1 = ((insn >> 24) & 0xf);
|
|
regno2 = ((insn >> 16) & 0xf);
|
|
if (check_condition_src(op2, regno1, regno2, child)) {
|
|
disp = (long)(insn << 16) >> 14;
|
|
*next_pc = (pc & ~0x3) + disp;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
*next_pc = pc + 4;
|
|
}
|
|
|
|
static inline void
|
|
compute_next_pc(unsigned long insn, unsigned long pc,
|
|
unsigned long *next_pc, struct task_struct *child)
|
|
{
|
|
if (insn & 0x80000000)
|
|
compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
|
|
else
|
|
compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
|
|
}
|
|
|
|
static int
|
|
register_debug_trap(struct task_struct *child, unsigned long next_pc,
|
|
unsigned long next_insn, unsigned long *code)
|
|
{
|
|
struct debug_trap *p = &child->thread.debug_trap;
|
|
unsigned long addr = next_pc & ~3;
|
|
|
|
if (p->nr_trap == MAX_TRAPS) {
|
|
printk("kernel BUG at %s %d: p->nr_trap = %d\n",
|
|
__FILE__, __LINE__, p->nr_trap);
|
|
return -1;
|
|
}
|
|
p->addr[p->nr_trap] = addr;
|
|
p->insn[p->nr_trap] = next_insn;
|
|
p->nr_trap++;
|
|
if (next_pc & 3) {
|
|
*code = (next_insn & 0xffff0000) | 0x10f1;
|
|
/* xxx --> TRAP1 */
|
|
} else {
|
|
if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
|
|
*code = 0x10f17000;
|
|
/* TRAP1 --> NOP */
|
|
} else {
|
|
*code = (next_insn & 0xffff) | 0x10f10000;
|
|
/* TRAP1 --> xxx */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
unregister_debug_trap(struct task_struct *child, unsigned long addr,
|
|
unsigned long *code)
|
|
{
|
|
struct debug_trap *p = &child->thread.debug_trap;
|
|
int i;
|
|
|
|
/* Search debug trap entry. */
|
|
for (i = 0; i < p->nr_trap; i++) {
|
|
if (p->addr[i] == addr)
|
|
break;
|
|
}
|
|
if (i >= p->nr_trap) {
|
|
/* The trap may be requested from debugger.
|
|
* ptrace should do nothing in this case.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* Recover original instruction code. */
|
|
*code = p->insn[i];
|
|
|
|
/* Shift debug trap entries. */
|
|
while (i < p->nr_trap - 1) {
|
|
p->insn[i] = p->insn[i + 1];
|
|
p->addr[i] = p->addr[i + 1];
|
|
i++;
|
|
}
|
|
p->nr_trap--;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
unregister_all_debug_traps(struct task_struct *child)
|
|
{
|
|
struct debug_trap *p = &child->thread.debug_trap;
|
|
int i;
|
|
|
|
for (i = 0; i < p->nr_trap; i++)
|
|
access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
|
|
p->nr_trap = 0;
|
|
}
|
|
|
|
static inline void
|
|
invalidate_cache(void)
|
|
{
|
|
#if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
|
|
|
|
_flush_cache_copyback_all();
|
|
|
|
#else /* ! CONFIG_CHIP_M32700 */
|
|
|
|
/* Invalidate cache */
|
|
__asm__ __volatile__ (
|
|
"ldi r0, #-1 \n\t"
|
|
"ldi r1, #0 \n\t"
|
|
"stb r1, @r0 ; cache off \n\t"
|
|
"; \n\t"
|
|
"ldi r0, #-2 \n\t"
|
|
"ldi r1, #1 \n\t"
|
|
"stb r1, @r0 ; cache invalidate \n\t"
|
|
".fillinsn \n"
|
|
"0: \n\t"
|
|
"ldb r1, @r0 ; invalidate check \n\t"
|
|
"bnez r1, 0b \n\t"
|
|
"; \n\t"
|
|
"ldi r0, #-1 \n\t"
|
|
"ldi r1, #1 \n\t"
|
|
"stb r1, @r0 ; cache on \n\t"
|
|
: : : "r0", "r1", "memory"
|
|
);
|
|
/* FIXME: copying-back d-cache and invalidating i-cache are needed.
|
|
*/
|
|
#endif /* CONFIG_CHIP_M32700 */
|
|
}
|
|
|
|
/* Embed a debug trap (TRAP1) code */
|
|
static int
|
|
embed_debug_trap(struct task_struct *child, unsigned long next_pc)
|
|
{
|
|
unsigned long next_insn, code;
|
|
unsigned long addr = next_pc & ~3;
|
|
|
|
if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
|
|
!= sizeof(next_insn)) {
|
|
return -1; /* error */
|
|
}
|
|
|
|
/* Set a trap code. */
|
|
if (register_debug_trap(child, next_pc, next_insn, &code)) {
|
|
return -1; /* error */
|
|
}
|
|
if (access_process_vm(child, addr, &code, sizeof(code), 1)
|
|
!= sizeof(code)) {
|
|
return -1; /* error */
|
|
}
|
|
return 0; /* success */
|
|
}
|
|
|
|
void
|
|
withdraw_debug_trap(struct pt_regs *regs)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long code;
|
|
|
|
addr = (regs->bpc - 2) & ~3;
|
|
regs->bpc -= 2;
|
|
if (unregister_debug_trap(current, addr, &code)) {
|
|
access_process_vm(current, addr, &code, sizeof(code), 1);
|
|
invalidate_cache();
|
|
}
|
|
}
|
|
|
|
void
|
|
init_debug_traps(struct task_struct *child)
|
|
{
|
|
struct debug_trap *p = &child->thread.debug_trap;
|
|
int i;
|
|
p->nr_trap = 0;
|
|
for (i = 0; i < MAX_TRAPS; i++) {
|
|
p->addr[i] = 0;
|
|
p->insn[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*
|
|
* Make sure single step bits etc are not set.
|
|
*/
|
|
void ptrace_disable(struct task_struct *child)
|
|
{
|
|
/* nothing to do.. */
|
|
}
|
|
|
|
long
|
|
arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
|
{
|
|
int ret;
|
|
|
|
switch (request) {
|
|
/*
|
|
* read word at location "addr" in the child process.
|
|
*/
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
ret = generic_ptrace_peekdata(child, addr, data);
|
|
break;
|
|
|
|
/*
|
|
* read the word at location addr in the USER area.
|
|
*/
|
|
case PTRACE_PEEKUSR:
|
|
ret = ptrace_read_user(child, addr,
|
|
(unsigned long __user *)data);
|
|
break;
|
|
|
|
/*
|
|
* write the word at location addr.
|
|
*/
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
ret = generic_ptrace_pokedata(child, addr, data);
|
|
if (ret == 0 && request == PTRACE_POKETEXT)
|
|
invalidate_cache();
|
|
break;
|
|
|
|
/*
|
|
* write the word at location addr in the USER area.
|
|
*/
|
|
case PTRACE_POKEUSR:
|
|
ret = ptrace_write_user(child, addr, data);
|
|
break;
|
|
|
|
/*
|
|
* continue/restart and stop at next (return from) syscall
|
|
*/
|
|
case PTRACE_SYSCALL:
|
|
case PTRACE_CONT:
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
break;
|
|
if (request == PTRACE_SYSCALL)
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
else
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
child->exit_code = data;
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
break;
|
|
|
|
/*
|
|
* make the child exit. Best I can do is send it a sigkill.
|
|
* perhaps it should be put in the status that it wants to
|
|
* exit.
|
|
*/
|
|
case PTRACE_KILL: {
|
|
ret = 0;
|
|
unregister_all_debug_traps(child);
|
|
invalidate_cache();
|
|
if (child->exit_state == EXIT_ZOMBIE) /* already dead */
|
|
break;
|
|
child->exit_code = SIGKILL;
|
|
wake_up_process(child);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* execute single instruction.
|
|
*/
|
|
case PTRACE_SINGLESTEP: {
|
|
unsigned long next_pc;
|
|
unsigned long pc, insn;
|
|
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
break;
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
|
|
/* Compute next pc. */
|
|
pc = get_stack_long(child, PT_BPC);
|
|
|
|
if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
|
|
!= sizeof(insn))
|
|
break;
|
|
|
|
compute_next_pc(insn, pc, &next_pc, child);
|
|
if (next_pc & 0x80000000)
|
|
break;
|
|
|
|
if (embed_debug_trap(child, next_pc))
|
|
break;
|
|
|
|
invalidate_cache();
|
|
child->exit_code = data;
|
|
|
|
/* give it a chance to run. */
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GETREGS:
|
|
ret = ptrace_getregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETREGS:
|
|
ret = ptrace_setregs(child, (void __user *)data);
|
|
break;
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* notification of system call entry/exit
|
|
* - triggered by current->work.syscall_trace
|
|
*/
|
|
void do_syscall_trace(void)
|
|
{
|
|
if (!test_thread_flag(TIF_SYSCALL_TRACE))
|
|
return;
|
|
if (!(current->ptrace & PT_PTRACED))
|
|
return;
|
|
/* the 0x80 provides a way for the tracing parent to distinguish
|
|
between a syscall stop and SIGTRAP delivery */
|
|
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
|
|
? 0x80 : 0));
|
|
|
|
/*
|
|
* this isn't the same as continuing with a signal, but it will do
|
|
* for normal use. strace only continues with a signal if the
|
|
* stopping signal is not SIGTRAP. -brl
|
|
*/
|
|
if (current->exit_code) {
|
|
send_sig(current->exit_code, current, 1);
|
|
current->exit_code = 0;
|
|
}
|
|
}
|