linux-stable-rt/drivers/net/wireless/ath/ath9k/recv.c

963 lines
24 KiB
C

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
#include "ar9003_mac.h"
#define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
{
return sc->ps_enabled &&
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
}
static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
struct ieee80211_hdr *hdr)
{
struct ieee80211_hw *hw = sc->pri_wiphy->hw;
int i;
spin_lock_bh(&sc->wiphy_lock);
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
if (aphy == NULL)
continue;
if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
== 0) {
hw = aphy->hw;
break;
}
}
spin_unlock_bh(&sc->wiphy_lock);
return hw;
}
/*
* Setup and link descriptors.
*
* 11N: we can no longer afford to self link the last descriptor.
* MAC acknowledges BA status as long as it copies frames to host
* buffer (or rx fifo). This can incorrectly acknowledge packets
* to a sender if last desc is self-linked.
*/
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_desc *ds;
struct sk_buff *skb;
ATH_RXBUF_RESET(bf);
ds = bf->bf_desc;
ds->ds_link = 0; /* link to null */
ds->ds_data = bf->bf_buf_addr;
/* virtual addr of the beginning of the buffer. */
skb = bf->bf_mpdu;
BUG_ON(skb == NULL);
ds->ds_vdata = skb->data;
/*
* setup rx descriptors. The rx_bufsize here tells the hardware
* how much data it can DMA to us and that we are prepared
* to process
*/
ath9k_hw_setuprxdesc(ah, ds,
common->rx_bufsize,
0);
if (sc->rx.rxlink == NULL)
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
else
*sc->rx.rxlink = bf->bf_daddr;
sc->rx.rxlink = &ds->ds_link;
ath9k_hw_rxena(ah);
}
static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
{
/* XXX block beacon interrupts */
ath9k_hw_setantenna(sc->sc_ah, antenna);
sc->rx.defant = antenna;
sc->rx.rxotherant = 0;
}
static void ath_opmode_init(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u32 rfilt, mfilt[2];
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
/* configure bssid mask */
if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
ath_hw_setbssidmask(common);
/* configure operational mode */
ath9k_hw_setopmode(ah);
/* Handle any link-level address change. */
ath9k_hw_setmac(ah, common->macaddr);
/* calculate and install multicast filter */
mfilt[0] = mfilt[1] = ~0;
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
}
static bool ath_rx_edma_buf_link(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_rx_edma *rx_edma;
struct sk_buff *skb;
struct ath_buf *bf;
rx_edma = &sc->rx.rx_edma[qtype];
if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
return false;
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
list_del_init(&bf->list);
skb = bf->bf_mpdu;
ATH_RXBUF_RESET(bf);
memset(skb->data, 0, ah->caps.rx_status_len);
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
ah->caps.rx_status_len, DMA_TO_DEVICE);
SKB_CB_ATHBUF(skb) = bf;
ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
skb_queue_tail(&rx_edma->rx_fifo, skb);
return true;
}
static void ath_rx_addbuffer_edma(struct ath_softc *sc,
enum ath9k_rx_qtype qtype, int size)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u32 nbuf = 0;
if (list_empty(&sc->rx.rxbuf)) {
ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
return;
}
while (!list_empty(&sc->rx.rxbuf)) {
nbuf++;
if (!ath_rx_edma_buf_link(sc, qtype))
break;
if (nbuf >= size)
break;
}
}
static void ath_rx_remove_buffer(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_buf *bf;
struct ath_rx_edma *rx_edma;
struct sk_buff *skb;
rx_edma = &sc->rx.rx_edma[qtype];
while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
list_add_tail(&bf->list, &sc->rx.rxbuf);
}
}
static void ath_rx_edma_cleanup(struct ath_softc *sc)
{
struct ath_buf *bf;
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
if (bf->bf_mpdu)
dev_kfree_skb_any(bf->bf_mpdu);
}
INIT_LIST_HEAD(&sc->rx.rxbuf);
kfree(sc->rx.rx_bufptr);
sc->rx.rx_bufptr = NULL;
}
static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
{
skb_queue_head_init(&rx_edma->rx_fifo);
skb_queue_head_init(&rx_edma->rx_buffers);
rx_edma->rx_fifo_hwsize = size;
}
static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_hw *ah = sc->sc_ah;
struct sk_buff *skb;
struct ath_buf *bf;
int error = 0, i;
u32 size;
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
ah->caps.rx_status_len,
min(common->cachelsz, (u16)64));
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
ah->caps.rx_status_len);
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
ah->caps.rx_lp_qdepth);
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
ah->caps.rx_hp_qdepth);
size = sizeof(struct ath_buf) * nbufs;
bf = kzalloc(size, GFP_KERNEL);
if (!bf)
return -ENOMEM;
INIT_LIST_HEAD(&sc->rx.rxbuf);
sc->rx.rx_bufptr = bf;
for (i = 0; i < nbufs; i++, bf++) {
skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
if (!skb) {
error = -ENOMEM;
goto rx_init_fail;
}
memset(skb->data, 0, common->rx_bufsize);
bf->bf_mpdu = skb;
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
common->rx_bufsize,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX init\n");
error = -ENOMEM;
goto rx_init_fail;
}
list_add_tail(&bf->list, &sc->rx.rxbuf);
}
return 0;
rx_init_fail:
ath_rx_edma_cleanup(sc);
return error;
}
static void ath_edma_start_recv(struct ath_softc *sc)
{
spin_lock_bh(&sc->rx.rxbuflock);
ath9k_hw_rxena(sc->sc_ah);
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
spin_unlock_bh(&sc->rx.rxbuflock);
ath_opmode_init(sc);
ath9k_hw_startpcureceive(sc->sc_ah);
}
static void ath_edma_stop_recv(struct ath_softc *sc)
{
spin_lock_bh(&sc->rx.rxbuflock);
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
spin_unlock_bh(&sc->rx.rxbuflock);
}
int ath_rx_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct sk_buff *skb;
struct ath_buf *bf;
int error = 0;
spin_lock_init(&sc->rx.rxflushlock);
sc->sc_flags &= ~SC_OP_RXFLUSH;
spin_lock_init(&sc->rx.rxbuflock);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
return ath_rx_edma_init(sc, nbufs);
} else {
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
min(common->cachelsz, (u16)64));
ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
common->cachelsz, common->rx_bufsize);
/* Initialize rx descriptors */
error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
"rx", nbufs, 1, 0);
if (error != 0) {
ath_print(common, ATH_DBG_FATAL,
"failed to allocate rx descriptors: %d\n",
error);
goto err;
}
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
skb = ath_rxbuf_alloc(common, common->rx_bufsize,
GFP_KERNEL);
if (skb == NULL) {
error = -ENOMEM;
goto err;
}
bf->bf_mpdu = skb;
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
common->rx_bufsize,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX init\n");
error = -ENOMEM;
goto err;
}
bf->bf_dmacontext = bf->bf_buf_addr;
}
sc->rx.rxlink = NULL;
}
err:
if (error)
ath_rx_cleanup(sc);
return error;
}
void ath_rx_cleanup(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct sk_buff *skb;
struct ath_buf *bf;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
ath_rx_edma_cleanup(sc);
return;
} else {
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
skb = bf->bf_mpdu;
if (skb) {
dma_unmap_single(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
DMA_FROM_DEVICE);
dev_kfree_skb(skb);
}
}
if (sc->rx.rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
}
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception (the hal
* may enable phy error frames for noise immunity work)
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating as a repeater so we see repeater-sta beacons
* - when scanning
*/
u32 ath_calcrxfilter(struct ath_softc *sc)
{
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
u32 rfilt;
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
| ATH9K_RX_FILTER_MCAST;
/* If not a STA, enable processing of Probe Requests */
if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
/*
* Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
* mode interface or when in monitor mode. AP mode does not need this
* since it receives all in-BSS frames anyway.
*/
if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
(sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
(sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
rfilt |= ATH9K_RX_FILTER_PROM;
if (sc->rx.rxfilter & FIF_CONTROL)
rfilt |= ATH9K_RX_FILTER_CONTROL;
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
!(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
rfilt |= ATH9K_RX_FILTER_MYBEACON;
else
rfilt |= ATH9K_RX_FILTER_BEACON;
if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
(sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
(sc->rx.rxfilter & FIF_PSPOLL))
rfilt |= ATH9K_RX_FILTER_PSPOLL;
if (conf_is_ht(&sc->hw->conf))
rfilt |= ATH9K_RX_FILTER_COMP_BAR;
if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
/* TODO: only needed if more than one BSSID is in use in
* station/adhoc mode */
/* The following may also be needed for other older chips */
if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
rfilt |= ATH9K_RX_FILTER_PROM;
rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
}
return rfilt;
#undef RX_FILTER_PRESERVE
}
int ath_startrecv(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_buf *bf, *tbf;
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
ath_edma_start_recv(sc);
return 0;
}
spin_lock_bh(&sc->rx.rxbuflock);
if (list_empty(&sc->rx.rxbuf))
goto start_recv;
sc->rx.rxlink = NULL;
list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
ath_rx_buf_link(sc, bf);
}
/* We could have deleted elements so the list may be empty now */
if (list_empty(&sc->rx.rxbuf))
goto start_recv;
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
ath9k_hw_rxena(ah);
start_recv:
spin_unlock_bh(&sc->rx.rxbuflock);
ath_opmode_init(sc);
ath9k_hw_startpcureceive(ah);
return 0;
}
bool ath_stoprecv(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
bool stopped;
ath9k_hw_stoppcurecv(ah);
ath9k_hw_setrxfilter(ah, 0);
stopped = ath9k_hw_stopdmarecv(ah);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_edma_stop_recv(sc);
else
sc->rx.rxlink = NULL;
return stopped;
}
void ath_flushrecv(struct ath_softc *sc)
{
spin_lock_bh(&sc->rx.rxflushlock);
sc->sc_flags |= SC_OP_RXFLUSH;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_rx_tasklet(sc, 1, true);
ath_rx_tasklet(sc, 1, false);
sc->sc_flags &= ~SC_OP_RXFLUSH;
spin_unlock_bh(&sc->rx.rxflushlock);
}
static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
{
/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
struct ieee80211_mgmt *mgmt;
u8 *pos, *end, id, elen;
struct ieee80211_tim_ie *tim;
mgmt = (struct ieee80211_mgmt *)skb->data;
pos = mgmt->u.beacon.variable;
end = skb->data + skb->len;
while (pos + 2 < end) {
id = *pos++;
elen = *pos++;
if (pos + elen > end)
break;
if (id == WLAN_EID_TIM) {
if (elen < sizeof(*tim))
break;
tim = (struct ieee80211_tim_ie *) pos;
if (tim->dtim_count != 0)
break;
return tim->bitmap_ctrl & 0x01;
}
pos += elen;
}
return false;
}
static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
{
struct ieee80211_mgmt *mgmt;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
if (skb->len < 24 + 8 + 2 + 2)
return;
mgmt = (struct ieee80211_mgmt *)skb->data;
if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
return; /* not from our current AP */
sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
if (sc->ps_flags & PS_BEACON_SYNC) {
sc->ps_flags &= ~PS_BEACON_SYNC;
ath_print(common, ATH_DBG_PS,
"Reconfigure Beacon timers based on "
"timestamp from the AP\n");
ath_beacon_config(sc, NULL);
}
if (ath_beacon_dtim_pending_cab(skb)) {
/*
* Remain awake waiting for buffered broadcast/multicast
* frames. If the last broadcast/multicast frame is not
* received properly, the next beacon frame will work as
* a backup trigger for returning into NETWORK SLEEP state,
* so we are waiting for it as well.
*/
ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
"buffered broadcast/multicast frame(s)\n");
sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
return;
}
if (sc->ps_flags & PS_WAIT_FOR_CAB) {
/*
* This can happen if a broadcast frame is dropped or the AP
* fails to send a frame indicating that all CAB frames have
* been delivered.
*/
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
ath_print(common, ATH_DBG_PS,
"PS wait for CAB frames timed out\n");
}
}
static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
hdr = (struct ieee80211_hdr *)skb->data;
/* Process Beacon and CAB receive in PS state */
if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
&& ieee80211_is_beacon(hdr->frame_control))
ath_rx_ps_beacon(sc, skb);
else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
(ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_action(hdr->frame_control)) &&
is_multicast_ether_addr(hdr->addr1) &&
!ieee80211_has_moredata(hdr->frame_control)) {
/*
* No more broadcast/multicast frames to be received at this
* point.
*/
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
ath_print(common, ATH_DBG_PS,
"All PS CAB frames received, back to sleep\n");
} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
!is_multicast_ether_addr(hdr->addr1) &&
!ieee80211_has_morefrags(hdr->frame_control)) {
sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
ath_print(common, ATH_DBG_PS,
"Going back to sleep after having received "
"PS-Poll data (0x%lx)\n",
sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA |
PS_WAIT_FOR_TX_ACK));
}
}
static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
struct ath_softc *sc, struct sk_buff *skb,
struct ieee80211_rx_status *rxs)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)skb->data;
/* Send the frame to mac80211 */
if (is_multicast_ether_addr(hdr->addr1)) {
int i;
/*
* Deliver broadcast/multicast frames to all suitable
* virtual wiphys.
*/
/* TODO: filter based on channel configuration */
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
struct sk_buff *nskb;
if (aphy == NULL)
continue;
nskb = skb_copy(skb, GFP_ATOMIC);
if (!nskb)
continue;
ieee80211_rx(aphy->hw, nskb);
}
ieee80211_rx(sc->hw, skb);
} else
/* Deliver unicast frames based on receiver address */
ieee80211_rx(hw, skb);
}
static bool ath_edma_get_buffers(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct sk_buff *skb;
struct ath_buf *bf;
int ret;
skb = skb_peek(&rx_edma->rx_fifo);
if (!skb)
return false;
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
common->rx_bufsize, DMA_FROM_DEVICE);
ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
if (ret == -EINPROGRESS)
return false;
__skb_unlink(skb, &rx_edma->rx_fifo);
if (ret == -EINVAL) {
/* corrupt descriptor, skip this one and the following one */
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
skb = skb_peek(&rx_edma->rx_fifo);
if (!skb)
return true;
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
__skb_unlink(skb, &rx_edma->rx_fifo);
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
return true;
}
skb_queue_tail(&rx_edma->rx_buffers, skb);
return true;
}
static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
struct ath_rx_status *rs,
enum ath9k_rx_qtype qtype)
{
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
struct sk_buff *skb;
struct ath_buf *bf;
while (ath_edma_get_buffers(sc, qtype));
skb = __skb_dequeue(&rx_edma->rx_buffers);
if (!skb)
return NULL;
bf = SKB_CB_ATHBUF(skb);
ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
return bf;
}
static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
struct ath_rx_status *rs)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_desc *ds;
struct ath_buf *bf;
int ret;
if (list_empty(&sc->rx.rxbuf)) {
sc->rx.rxlink = NULL;
return NULL;
}
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
ds = bf->bf_desc;
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
if (ret == -EINPROGRESS) {
struct ath_rx_status trs;
struct ath_buf *tbf;
struct ath_desc *tds;
memset(&trs, 0, sizeof(trs));
if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
sc->rx.rxlink = NULL;
return NULL;
}
tbf = list_entry(bf->list.next, struct ath_buf, list);
/*
* On some hardware the descriptor status words could
* get corrupted, including the done bit. Because of
* this, check if the next descriptor's done bit is
* set or not.
*
* If the next descriptor's done bit is set, the current
* descriptor has been corrupted. Force s/w to discard
* this descriptor and continue...
*/
tds = tbf->bf_desc;
ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
if (ret == -EINPROGRESS)
return NULL;
}
if (!bf->bf_mpdu)
return bf;
/*
* Synchronize the DMA transfer with CPU before
* 1. accessing the frame
* 2. requeueing the same buffer to h/w
*/
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
DMA_FROM_DEVICE);
return bf;
}
int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
{
struct ath_buf *bf;
struct sk_buff *skb = NULL, *requeue_skb;
struct ieee80211_rx_status *rxs;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
/*
* The hw can techncically differ from common->hw when using ath9k
* virtual wiphy so to account for that we iterate over the active
* wiphys and find the appropriate wiphy and therefore hw.
*/
struct ieee80211_hw *hw = NULL;
struct ieee80211_hdr *hdr;
int retval;
bool decrypt_error = false;
struct ath_rx_status rs;
enum ath9k_rx_qtype qtype;
bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
int dma_type;
if (edma)
dma_type = DMA_FROM_DEVICE;
else
dma_type = DMA_BIDIRECTIONAL;
qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
spin_lock_bh(&sc->rx.rxbuflock);
do {
/* If handling rx interrupt and flush is in progress => exit */
if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
break;
memset(&rs, 0, sizeof(rs));
if (edma)
bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
else
bf = ath_get_next_rx_buf(sc, &rs);
if (!bf)
break;
skb = bf->bf_mpdu;
if (!skb)
continue;
hdr = (struct ieee80211_hdr *) skb->data;
rxs = IEEE80211_SKB_RXCB(skb);
hw = ath_get_virt_hw(sc, hdr);
ath_debug_stat_rx(sc, &rs);
/*
* If we're asked to flush receive queue, directly
* chain it back at the queue without processing it.
*/
if (flush)
goto requeue;
retval = ath9k_cmn_rx_skb_preprocess(common, hw, skb, &rs,
rxs, &decrypt_error);
if (retval)
goto requeue;
/* Ensure we always have an skb to requeue once we are done
* processing the current buffer's skb */
requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
/* If there is no memory we ignore the current RX'd frame,
* tell hardware it can give us a new frame using the old
* skb and put it at the tail of the sc->rx.rxbuf list for
* processing. */
if (!requeue_skb)
goto requeue;
/* Unmap the frame */
dma_unmap_single(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
dma_type);
skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
if (ah->caps.rx_status_len)
skb_pull(skb, ah->caps.rx_status_len);
ath9k_cmn_rx_skb_postprocess(common, skb, &rs,
rxs, decrypt_error);
/* We will now give hardware our shiny new allocated skb */
bf->bf_mpdu = requeue_skb;
bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
common->rx_bufsize,
dma_type);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(requeue_skb);
bf->bf_mpdu = NULL;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX\n");
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
break;
}
bf->bf_dmacontext = bf->bf_buf_addr;
/*
* change the default rx antenna if rx diversity chooses the
* other antenna 3 times in a row.
*/
if (sc->rx.defant != rs.rs_antenna) {
if (++sc->rx.rxotherant >= 3)
ath_setdefantenna(sc, rs.rs_antenna);
} else {
sc->rx.rxotherant = 0;
}
if (unlikely(ath9k_check_auto_sleep(sc) ||
(sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA))))
ath_rx_ps(sc, skb);
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
requeue:
if (edma) {
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
} else {
list_move_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_buf_link(sc, bf);
}
} while (1);
spin_unlock_bh(&sc->rx.rxbuflock);
return 0;
}