356 lines
8.9 KiB
C
356 lines
8.9 KiB
C
/*
|
|
* c 2001 PPC 64 Team, IBM Corp
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* /dev/nvram driver for PPC64
|
|
*
|
|
* This perhaps should live in drivers/char
|
|
*/
|
|
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
|
|
/* Max bytes to read/write in one go */
|
|
#define NVRW_CNT 0x20
|
|
|
|
static unsigned int nvram_size;
|
|
static int nvram_fetch, nvram_store;
|
|
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
|
|
static DEFINE_SPINLOCK(nvram_lock);
|
|
|
|
static long nvram_error_log_index = -1;
|
|
static long nvram_error_log_size = 0;
|
|
|
|
struct err_log_info {
|
|
int error_type;
|
|
unsigned int seq_num;
|
|
};
|
|
#define NVRAM_MAX_REQ 2079
|
|
#define NVRAM_MIN_REQ 1055
|
|
|
|
#define NVRAM_LOG_PART_NAME "ibm,rtas-log"
|
|
|
|
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
|
|
{
|
|
unsigned int i;
|
|
unsigned long len;
|
|
int done;
|
|
unsigned long flags;
|
|
char *p = buf;
|
|
|
|
|
|
if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
|
|
return -ENODEV;
|
|
|
|
if (*index >= nvram_size)
|
|
return 0;
|
|
|
|
i = *index;
|
|
if (i + count > nvram_size)
|
|
count = nvram_size - i;
|
|
|
|
spin_lock_irqsave(&nvram_lock, flags);
|
|
|
|
for (; count != 0; count -= len) {
|
|
len = count;
|
|
if (len > NVRW_CNT)
|
|
len = NVRW_CNT;
|
|
|
|
if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
|
|
len) != 0) || len != done) {
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(p, nvram_buf, len);
|
|
|
|
p += len;
|
|
i += len;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
|
|
*index = i;
|
|
return p - buf;
|
|
}
|
|
|
|
static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
|
|
{
|
|
unsigned int i;
|
|
unsigned long len;
|
|
int done;
|
|
unsigned long flags;
|
|
const char *p = buf;
|
|
|
|
if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
|
|
return -ENODEV;
|
|
|
|
if (*index >= nvram_size)
|
|
return 0;
|
|
|
|
i = *index;
|
|
if (i + count > nvram_size)
|
|
count = nvram_size - i;
|
|
|
|
spin_lock_irqsave(&nvram_lock, flags);
|
|
|
|
for (; count != 0; count -= len) {
|
|
len = count;
|
|
if (len > NVRW_CNT)
|
|
len = NVRW_CNT;
|
|
|
|
memcpy(nvram_buf, p, len);
|
|
|
|
if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
|
|
len) != 0) || len != done) {
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
return -EIO;
|
|
}
|
|
|
|
p += len;
|
|
i += len;
|
|
}
|
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
|
|
|
*index = i;
|
|
return p - buf;
|
|
}
|
|
|
|
static ssize_t pSeries_nvram_get_size(void)
|
|
{
|
|
return nvram_size ? nvram_size : -ENODEV;
|
|
}
|
|
|
|
|
|
/* nvram_write_error_log
|
|
*
|
|
* We need to buffer the error logs into nvram to ensure that we have
|
|
* the failure information to decode. If we have a severe error there
|
|
* is no way to guarantee that the OS or the machine is in a state to
|
|
* get back to user land and write the error to disk. For example if
|
|
* the SCSI device driver causes a Machine Check by writing to a bad
|
|
* IO address, there is no way of guaranteeing that the device driver
|
|
* is in any state that is would also be able to write the error data
|
|
* captured to disk, thus we buffer it in NVRAM for analysis on the
|
|
* next boot.
|
|
*
|
|
* In NVRAM the partition containing the error log buffer will looks like:
|
|
* Header (in bytes):
|
|
* +-----------+----------+--------+------------+------------------+
|
|
* | signature | checksum | length | name | data |
|
|
* |0 |1 |2 3|4 15|16 length-1|
|
|
* +-----------+----------+--------+------------+------------------+
|
|
*
|
|
* The 'data' section would look like (in bytes):
|
|
* +--------------+------------+-----------------------------------+
|
|
* | event_logged | sequence # | error log |
|
|
* |0 3|4 7|8 nvram_error_log_size-1|
|
|
* +--------------+------------+-----------------------------------+
|
|
*
|
|
* event_logged: 0 if event has not been logged to syslog, 1 if it has
|
|
* sequence #: The unique sequence # for each event. (until it wraps)
|
|
* error log: The error log from event_scan
|
|
*/
|
|
int nvram_write_error_log(char * buff, int length,
|
|
unsigned int err_type, unsigned int error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (nvram_error_log_index == -1) {
|
|
return -ESPIPE;
|
|
}
|
|
|
|
if (length > nvram_error_log_size) {
|
|
length = nvram_error_log_size;
|
|
}
|
|
|
|
info.error_type = err_type;
|
|
info.seq_num = error_log_cnt;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_write(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvram_read_error_log
|
|
*
|
|
* Reads nvram for error log for at most 'length'
|
|
*/
|
|
int nvram_read_error_log(char * buff, int length,
|
|
unsigned int * err_type, unsigned int * error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (nvram_error_log_index == -1)
|
|
return -1;
|
|
|
|
if (length > nvram_error_log_size)
|
|
length = nvram_error_log_size;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_read(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
*error_log_cnt = info.seq_num;
|
|
*err_type = info.error_type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This doesn't actually zero anything, but it sets the event_logged
|
|
* word to tell that this event is safely in syslog.
|
|
*/
|
|
int nvram_clear_error_log(void)
|
|
{
|
|
loff_t tmp_index;
|
|
int clear_word = ERR_FLAG_ALREADY_LOGGED;
|
|
int rc;
|
|
|
|
if (nvram_error_log_index == -1)
|
|
return -1;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* pseries_nvram_init_log_partition
|
|
*
|
|
* This will setup the partition we need for buffering the
|
|
* error logs and cleanup partitions if needed.
|
|
*
|
|
* The general strategy is the following:
|
|
* 1.) If there is log partition large enough then use it.
|
|
* 2.) If there is none large enough, search
|
|
* for a free partition that is large enough.
|
|
* 3.) If there is not a free partition large enough remove
|
|
* _all_ OS partitions and consolidate the space.
|
|
* 4.) Will first try getting a chunk that will satisfy the maximum
|
|
* error log size (NVRAM_MAX_REQ).
|
|
* 5.) If the max chunk cannot be allocated then try finding a chunk
|
|
* that will satisfy the minum needed (NVRAM_MIN_REQ).
|
|
*/
|
|
static int __init pseries_nvram_init_log_partition(void)
|
|
{
|
|
loff_t p;
|
|
int size;
|
|
|
|
/* Scan nvram for partitions */
|
|
nvram_scan_partitions();
|
|
|
|
/* Lookg for ours */
|
|
p = nvram_find_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS, &size);
|
|
|
|
/* Found one but too small, remove it */
|
|
if (p && size < NVRAM_MIN_REQ) {
|
|
pr_info("nvram: Found too small "NVRAM_LOG_PART_NAME" partition"
|
|
",removing it...");
|
|
nvram_remove_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS);
|
|
p = 0;
|
|
}
|
|
|
|
/* Create one if we didn't find */
|
|
if (!p) {
|
|
p = nvram_create_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS,
|
|
NVRAM_MAX_REQ, NVRAM_MIN_REQ);
|
|
/* No room for it, try to get rid of any OS partition
|
|
* and try again
|
|
*/
|
|
if (p == -ENOSPC) {
|
|
pr_info("nvram: No room to create "NVRAM_LOG_PART_NAME
|
|
" partition, deleting all OS partitions...");
|
|
nvram_remove_partition(NULL, NVRAM_SIG_OS);
|
|
p = nvram_create_partition(NVRAM_LOG_PART_NAME,
|
|
NVRAM_SIG_OS, NVRAM_MAX_REQ,
|
|
NVRAM_MIN_REQ);
|
|
}
|
|
}
|
|
|
|
if (p <= 0) {
|
|
pr_err("nvram: Failed to find or create "NVRAM_LOG_PART_NAME
|
|
" partition, err %d\n", (int)p);
|
|
return 0;
|
|
}
|
|
|
|
nvram_error_log_index = p;
|
|
nvram_error_log_size = nvram_get_partition_size(p) -
|
|
sizeof(struct err_log_info);
|
|
|
|
return 0;
|
|
}
|
|
machine_arch_initcall(pseries, pseries_nvram_init_log_partition);
|
|
|
|
int __init pSeries_nvram_init(void)
|
|
{
|
|
struct device_node *nvram;
|
|
const unsigned int *nbytes_p;
|
|
unsigned int proplen;
|
|
|
|
nvram = of_find_node_by_type(NULL, "nvram");
|
|
if (nvram == NULL)
|
|
return -ENODEV;
|
|
|
|
nbytes_p = of_get_property(nvram, "#bytes", &proplen);
|
|
if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
|
|
of_node_put(nvram);
|
|
return -EIO;
|
|
}
|
|
|
|
nvram_size = *nbytes_p;
|
|
|
|
nvram_fetch = rtas_token("nvram-fetch");
|
|
nvram_store = rtas_token("nvram-store");
|
|
printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
|
|
of_node_put(nvram);
|
|
|
|
ppc_md.nvram_read = pSeries_nvram_read;
|
|
ppc_md.nvram_write = pSeries_nvram_write;
|
|
ppc_md.nvram_size = pSeries_nvram_get_size;
|
|
|
|
return 0;
|
|
}
|