658 lines
16 KiB
C
658 lines
16 KiB
C
/*
|
|
*
|
|
* Procedures for interfacing to the RTAS on CHRP machines.
|
|
*
|
|
* Peter Bergner, IBM March 2001.
|
|
* Copyright (C) 2001 IBM.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/system.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/systemcfg.h>
|
|
|
|
struct flash_block_list_header rtas_firmware_flash_list = {0, NULL};
|
|
|
|
struct rtas_t rtas = {
|
|
.lock = SPIN_LOCK_UNLOCKED
|
|
};
|
|
|
|
EXPORT_SYMBOL(rtas);
|
|
|
|
char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
|
|
|
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
|
char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned;
|
|
unsigned long rtas_rmo_buf;
|
|
|
|
void
|
|
call_rtas_display_status(unsigned char c)
|
|
{
|
|
struct rtas_args *args = &rtas.args;
|
|
unsigned long s;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
spin_lock_irqsave(&rtas.lock, s);
|
|
|
|
args->token = 10;
|
|
args->nargs = 1;
|
|
args->nret = 1;
|
|
args->rets = (rtas_arg_t *)&(args->args[1]);
|
|
args->args[0] = (int)c;
|
|
|
|
enter_rtas(__pa(args));
|
|
|
|
spin_unlock_irqrestore(&rtas.lock, s);
|
|
}
|
|
|
|
void
|
|
call_rtas_display_status_delay(unsigned char c)
|
|
{
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
static int width = 16;
|
|
|
|
if (c == '\n') {
|
|
while (width-- > 0)
|
|
call_rtas_display_status(' ');
|
|
width = 16;
|
|
udelay(500000);
|
|
pending_newline = 1;
|
|
} else {
|
|
if (pending_newline) {
|
|
call_rtas_display_status('\r');
|
|
call_rtas_display_status('\n');
|
|
}
|
|
pending_newline = 0;
|
|
if (width--) {
|
|
call_rtas_display_status(c);
|
|
udelay(10000);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
rtas_token(const char *service)
|
|
{
|
|
int *tokp;
|
|
if (rtas.dev == NULL) {
|
|
PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n");
|
|
return RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
tokp = (int *) get_property(rtas.dev, service, NULL);
|
|
return tokp ? *tokp : RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
|
|
/*
|
|
* Return the firmware-specified size of the error log buffer
|
|
* for all rtas calls that require an error buffer argument.
|
|
* This includes 'check-exception' and 'rtas-last-error'.
|
|
*/
|
|
int rtas_get_error_log_max(void)
|
|
{
|
|
static int rtas_error_log_max;
|
|
if (rtas_error_log_max)
|
|
return rtas_error_log_max;
|
|
|
|
rtas_error_log_max = rtas_token ("rtas-error-log-max");
|
|
if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
|
|
(rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
|
|
printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max);
|
|
rtas_error_log_max = RTAS_ERROR_LOG_MAX;
|
|
}
|
|
return rtas_error_log_max;
|
|
}
|
|
|
|
|
|
/** Return a copy of the detailed error text associated with the
|
|
* most recent failed call to rtas. Because the error text
|
|
* might go stale if there are any other intervening rtas calls,
|
|
* this routine must be called atomically with whatever produced
|
|
* the error (i.e. with rtas.lock still held from the previous call).
|
|
*/
|
|
static int
|
|
__fetch_rtas_last_error(void)
|
|
{
|
|
struct rtas_args err_args, save_args;
|
|
u32 bufsz;
|
|
|
|
bufsz = rtas_get_error_log_max();
|
|
|
|
err_args.token = rtas_token("rtas-last-error");
|
|
err_args.nargs = 2;
|
|
err_args.nret = 1;
|
|
|
|
err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf);
|
|
err_args.args[1] = bufsz;
|
|
err_args.args[2] = 0;
|
|
|
|
save_args = rtas.args;
|
|
rtas.args = err_args;
|
|
|
|
enter_rtas(__pa(&rtas.args));
|
|
|
|
err_args = rtas.args;
|
|
rtas.args = save_args;
|
|
|
|
return err_args.args[2];
|
|
}
|
|
|
|
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
int i, logit = 0;
|
|
unsigned long s;
|
|
struct rtas_args *rtas_args;
|
|
char * buff_copy = NULL;
|
|
int ret;
|
|
|
|
PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n");
|
|
PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token);
|
|
PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs);
|
|
PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret);
|
|
PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs);
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
/* Gotta do something different here, use global lock for now... */
|
|
spin_lock_irqsave(&rtas.lock, s);
|
|
rtas_args = &rtas.args;
|
|
|
|
rtas_args->token = token;
|
|
rtas_args->nargs = nargs;
|
|
rtas_args->nret = nret;
|
|
rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]);
|
|
va_start(list, outputs);
|
|
for (i = 0; i < nargs; ++i) {
|
|
rtas_args->args[i] = va_arg(list, rtas_arg_t);
|
|
PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]);
|
|
}
|
|
va_end(list);
|
|
|
|
for (i = 0; i < nret; ++i)
|
|
rtas_args->rets[i] = 0;
|
|
|
|
PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n",
|
|
__pa(rtas_args));
|
|
enter_rtas(__pa(rtas_args));
|
|
PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n");
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (rtas_args->rets[0] == -1)
|
|
logit = (__fetch_rtas_last_error() == 0);
|
|
|
|
ifppcdebug(PPCDBG_RTAS) {
|
|
for(i=0; i < nret ;i++)
|
|
udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]);
|
|
}
|
|
|
|
if (nret > 1 && outputs != NULL)
|
|
for (i = 0; i < nret-1; ++i)
|
|
outputs[i] = rtas_args->rets[i+1];
|
|
ret = (nret > 0)? rtas_args->rets[0]: 0;
|
|
|
|
/* Log the error in the unlikely case that there was one. */
|
|
if (unlikely(logit)) {
|
|
buff_copy = rtas_err_buf;
|
|
if (mem_init_done) {
|
|
buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
|
if (buff_copy)
|
|
memcpy(buff_copy, rtas_err_buf,
|
|
RTAS_ERROR_LOG_MAX);
|
|
}
|
|
}
|
|
|
|
/* Gotta do something different here, use global lock for now... */
|
|
spin_unlock_irqrestore(&rtas.lock, s);
|
|
|
|
if (buff_copy) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
if (mem_init_done)
|
|
kfree(buff_copy);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Given an RTAS status code of 990n compute the hinted delay of 10^n
|
|
* (last digit) milliseconds. For now we bound at n=5 (100 sec).
|
|
*/
|
|
unsigned int
|
|
rtas_extended_busy_delay_time(int status)
|
|
{
|
|
int order = status - 9900;
|
|
unsigned long ms;
|
|
|
|
if (order < 0)
|
|
order = 0; /* RTC depends on this for -2 clock busy */
|
|
else if (order > 5)
|
|
order = 5; /* bound */
|
|
|
|
/* Use microseconds for reasonable accuracy */
|
|
for (ms=1; order > 0; order--)
|
|
ms *= 10;
|
|
|
|
return ms;
|
|
}
|
|
|
|
int rtas_error_rc(int rtas_rc)
|
|
{
|
|
int rc;
|
|
|
|
switch (rtas_rc) {
|
|
case -1: /* Hardware Error */
|
|
rc = -EIO;
|
|
break;
|
|
case -3: /* Bad indicator/domain/etc */
|
|
rc = -EINVAL;
|
|
break;
|
|
case -9000: /* Isolation error */
|
|
rc = -EFAULT;
|
|
break;
|
|
case -9001: /* Outstanding TCE/PTE */
|
|
rc = -EEXIST;
|
|
break;
|
|
case -9002: /* No usable slot */
|
|
rc = -ENODEV;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
|
|
__FUNCTION__, rtas_rc);
|
|
rc = -ERANGE;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_power_level(int powerdomain, int *level)
|
|
{
|
|
int token = rtas_token("get-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
|
udelay(1);
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
|
{
|
|
int token = rtas_token("set-power-level");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_sensor(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_set_indicator(int indicator, int index, int new_value)
|
|
{
|
|
int token = rtas_token("set-indicator");
|
|
unsigned int wait_time;
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while (1) {
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
if (rc == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (rtas_is_extended_busy(rc)) {
|
|
wait_time = rtas_extended_busy_delay_time(rc);
|
|
udelay(wait_time * 1000);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
#define FLASH_BLOCK_LIST_VERSION (1UL)
|
|
static void
|
|
rtas_flash_firmware(void)
|
|
{
|
|
unsigned long image_size;
|
|
struct flash_block_list *f, *next, *flist;
|
|
unsigned long rtas_block_list;
|
|
int i, status, update_token;
|
|
|
|
update_token = rtas_token("ibm,update-flash-64-and-reboot");
|
|
if (update_token == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n");
|
|
printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
|
|
return;
|
|
}
|
|
|
|
/* NOTE: the "first" block list is a global var with no data
|
|
* blocks in the kernel data segment. We do this because
|
|
* we want to ensure this block_list addr is under 4GB.
|
|
*/
|
|
rtas_firmware_flash_list.num_blocks = 0;
|
|
flist = (struct flash_block_list *)&rtas_firmware_flash_list;
|
|
rtas_block_list = virt_to_abs(flist);
|
|
if (rtas_block_list >= 4UL*1024*1024*1024) {
|
|
printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
|
|
return;
|
|
}
|
|
|
|
printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
|
|
/* Update the block_list in place. */
|
|
image_size = 0;
|
|
for (f = flist; f; f = next) {
|
|
/* Translate data addrs to absolute */
|
|
for (i = 0; i < f->num_blocks; i++) {
|
|
f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
|
|
image_size += f->blocks[i].length;
|
|
}
|
|
next = f->next;
|
|
/* Don't translate NULL pointer for last entry */
|
|
if (f->next)
|
|
f->next = (struct flash_block_list *)virt_to_abs(f->next);
|
|
else
|
|
f->next = NULL;
|
|
/* make num_blocks into the version/length field */
|
|
f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
|
|
}
|
|
|
|
printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
|
|
printk(KERN_ALERT "FLASH: performing flash and reboot\n");
|
|
ppc_md.progress("Flashing \n", 0x0);
|
|
ppc_md.progress("Please Wait... ", 0x0);
|
|
printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
|
|
status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
|
|
switch (status) { /* should only get "bad" status */
|
|
case 0:
|
|
printk(KERN_ALERT "FLASH: success\n");
|
|
break;
|
|
case -1:
|
|
printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
|
|
break;
|
|
case -3:
|
|
printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
|
|
break;
|
|
case -4:
|
|
printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
|
|
break;
|
|
default:
|
|
printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rtas_flash_bypass_warning(void)
|
|
{
|
|
printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
|
|
printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
|
|
}
|
|
|
|
|
|
void
|
|
rtas_restart(char *cmd)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_firmware();
|
|
|
|
printk("RTAS system-reboot returned %d\n",
|
|
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
|
|
for (;;);
|
|
}
|
|
|
|
void
|
|
rtas_power_off(void)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_bypass_warning();
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
void
|
|
rtas_halt(void)
|
|
{
|
|
if (rtas_firmware_flash_list.next)
|
|
rtas_flash_bypass_warning();
|
|
rtas_power_off();
|
|
}
|
|
|
|
/* Must be in the RMO region, so we place it here */
|
|
static char rtas_os_term_buf[2048];
|
|
|
|
void rtas_os_term(char *str)
|
|
{
|
|
int status;
|
|
|
|
if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term"))
|
|
return;
|
|
|
|
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
|
|
|
do {
|
|
status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
|
|
__pa(rtas_os_term_buf));
|
|
|
|
if (status == RTAS_BUSY)
|
|
udelay(1);
|
|
else if (status != 0)
|
|
printk(KERN_EMERG "ibm,os-term call failed %d\n",
|
|
status);
|
|
} while (status == RTAS_BUSY);
|
|
}
|
|
|
|
|
|
asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
|
|
{
|
|
struct rtas_args args;
|
|
unsigned long flags;
|
|
char * buff_copy;
|
|
int nargs;
|
|
int err_rc = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
|
return -EFAULT;
|
|
|
|
nargs = args.nargs;
|
|
if (nargs > ARRAY_SIZE(args.args)
|
|
|| args.nret > ARRAY_SIZE(args.args)
|
|
|| nargs + args.nret > ARRAY_SIZE(args.args))
|
|
return -EINVAL;
|
|
|
|
/* Copy in args. */
|
|
if (copy_from_user(args.args, uargs->args,
|
|
nargs * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL);
|
|
|
|
spin_lock_irqsave(&rtas.lock, flags);
|
|
|
|
rtas.args = args;
|
|
enter_rtas(__pa(&rtas.args));
|
|
args = rtas.args;
|
|
|
|
args.rets = &args.args[nargs];
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (args.rets[0] == -1) {
|
|
err_rc = __fetch_rtas_last_error();
|
|
if ((err_rc == 0) && buff_copy) {
|
|
memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rtas.lock, flags);
|
|
|
|
if (buff_copy) {
|
|
if ((args.rets[0] == -1) && (err_rc == 0)) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
}
|
|
kfree(buff_copy);
|
|
}
|
|
|
|
/* Copy out args. */
|
|
if (copy_to_user(uargs->args + nargs,
|
|
args.args + nargs,
|
|
args.nret * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This version can't take the spinlock, because it never returns */
|
|
|
|
struct rtas_args rtas_stop_self_args = {
|
|
/* The token is initialized for real in setup_system() */
|
|
.token = RTAS_UNKNOWN_SERVICE,
|
|
.nargs = 0,
|
|
.nret = 1,
|
|
.rets = &rtas_stop_self_args.args[0],
|
|
};
|
|
|
|
void rtas_stop_self(void)
|
|
{
|
|
struct rtas_args *rtas_args = &rtas_stop_self_args;
|
|
|
|
local_irq_disable();
|
|
|
|
BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE);
|
|
|
|
printk("cpu %u (hwid %u) Ready to die...\n",
|
|
smp_processor_id(), hard_smp_processor_id());
|
|
enter_rtas(__pa(rtas_args));
|
|
|
|
panic("Alas, I survived.\n");
|
|
}
|
|
|
|
/*
|
|
* Call early during boot, before mem init or bootmem, to retreive the RTAS
|
|
* informations from the device-tree and allocate the RMO buffer for userland
|
|
* accesses.
|
|
*/
|
|
void __init rtas_initialize(void)
|
|
{
|
|
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
|
* about it.
|
|
*/
|
|
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
|
if (rtas.dev) {
|
|
u32 *basep, *entryp;
|
|
u32 *sizep;
|
|
|
|
basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL);
|
|
sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL);
|
|
if (basep != NULL && sizep != NULL) {
|
|
rtas.base = *basep;
|
|
rtas.size = *sizep;
|
|
entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL);
|
|
if (entryp == NULL) /* Ugh */
|
|
rtas.entry = rtas.base;
|
|
else
|
|
rtas.entry = *entryp;
|
|
} else
|
|
rtas.dev = NULL;
|
|
}
|
|
/* If RTAS was found, allocate the RMO buffer for it and look for
|
|
* the stop-self token if any
|
|
*/
|
|
if (rtas.dev) {
|
|
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
|
if (systemcfg->platform == PLATFORM_PSERIES_LPAR)
|
|
rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX);
|
|
|
|
rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE,
|
|
rtas_region);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
rtas_stop_self_args.token = rtas_token("stop-self");
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
}
|
|
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(rtas_firmware_flash_list);
|
|
EXPORT_SYMBOL(rtas_token);
|
|
EXPORT_SYMBOL(rtas_call);
|
|
EXPORT_SYMBOL(rtas_data_buf);
|
|
EXPORT_SYMBOL(rtas_data_buf_lock);
|
|
EXPORT_SYMBOL(rtas_extended_busy_delay_time);
|
|
EXPORT_SYMBOL(rtas_get_sensor);
|
|
EXPORT_SYMBOL(rtas_get_power_level);
|
|
EXPORT_SYMBOL(rtas_set_power_level);
|
|
EXPORT_SYMBOL(rtas_set_indicator);
|
|
EXPORT_SYMBOL(rtas_get_error_log_max);
|