201 lines
5.2 KiB
C
201 lines
5.2 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* 32-bit SMP spinlocks.
|
|
*/
|
|
|
|
#ifndef _ASM_TILE_SPINLOCK_32_H
|
|
#define _ASM_TILE_SPINLOCK_32_H
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/page.h>
|
|
#include <asm/system.h>
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
* We only use even ticket numbers so the '1' inserted by a tns is
|
|
* an unambiguous "ticket is busy" flag.
|
|
*/
|
|
#define TICKET_QUANTUM 2
|
|
|
|
|
|
/*
|
|
* SMP ticket spinlocks, allowing only a single CPU anywhere
|
|
*
|
|
* (the type definitions are in asm/spinlock_types.h)
|
|
*/
|
|
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
|
|
{
|
|
/*
|
|
* Note that even if a new ticket is in the process of being
|
|
* acquired, so lock->next_ticket is 1, it's still reasonable
|
|
* to claim the lock is held, since it will be momentarily
|
|
* if not already. There's no need to wait for a "valid"
|
|
* lock->next_ticket to become available.
|
|
*/
|
|
return lock->next_ticket != lock->current_ticket;
|
|
}
|
|
|
|
void arch_spin_lock(arch_spinlock_t *lock);
|
|
|
|
/* We cannot take an interrupt after getting a ticket, so don't enable them. */
|
|
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
|
|
|
|
int arch_spin_trylock(arch_spinlock_t *lock);
|
|
|
|
static inline void arch_spin_unlock(arch_spinlock_t *lock)
|
|
{
|
|
/* For efficiency, overlap fetching the old ticket with the wmb(). */
|
|
int old_ticket = lock->current_ticket;
|
|
wmb(); /* guarantee anything modified under the lock is visible */
|
|
lock->current_ticket = old_ticket + TICKET_QUANTUM;
|
|
}
|
|
|
|
void arch_spin_unlock_wait(arch_spinlock_t *lock);
|
|
|
|
/*
|
|
* Read-write spinlocks, allowing multiple readers
|
|
* but only one writer.
|
|
*
|
|
* We use a "tns/store-back" technique on a single word to manage
|
|
* the lock state, looping around to retry if the tns returns 1.
|
|
*/
|
|
|
|
/* Internal layout of the word; do not use. */
|
|
#define _WR_NEXT_SHIFT 8
|
|
#define _WR_CURR_SHIFT 16
|
|
#define _WR_WIDTH 8
|
|
#define _RD_COUNT_SHIFT 24
|
|
#define _RD_COUNT_WIDTH 8
|
|
|
|
/* Internal functions; do not use. */
|
|
void arch_read_lock_slow(arch_rwlock_t *, u32);
|
|
int arch_read_trylock_slow(arch_rwlock_t *);
|
|
void arch_read_unlock_slow(arch_rwlock_t *);
|
|
void arch_write_lock_slow(arch_rwlock_t *, u32);
|
|
void arch_write_unlock_slow(arch_rwlock_t *, u32);
|
|
|
|
/**
|
|
* arch_read_can_lock() - would read_trylock() succeed?
|
|
*/
|
|
static inline int arch_read_can_lock(arch_rwlock_t *rwlock)
|
|
{
|
|
return (rwlock->lock << _RD_COUNT_WIDTH) == 0;
|
|
}
|
|
|
|
/**
|
|
* arch_write_can_lock() - would write_trylock() succeed?
|
|
*/
|
|
static inline int arch_write_can_lock(arch_rwlock_t *rwlock)
|
|
{
|
|
return rwlock->lock == 0;
|
|
}
|
|
|
|
/**
|
|
* arch_read_lock() - acquire a read lock.
|
|
*/
|
|
static inline void arch_read_lock(arch_rwlock_t *rwlock)
|
|
{
|
|
u32 val = __insn_tns((int *)&rwlock->lock);
|
|
if (unlikely(val << _RD_COUNT_WIDTH)) {
|
|
arch_read_lock_slow(rwlock, val);
|
|
return;
|
|
}
|
|
rwlock->lock = val + (1 << _RD_COUNT_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* arch_read_lock() - acquire a write lock.
|
|
*/
|
|
static inline void arch_write_lock(arch_rwlock_t *rwlock)
|
|
{
|
|
u32 val = __insn_tns((int *)&rwlock->lock);
|
|
if (unlikely(val != 0)) {
|
|
arch_write_lock_slow(rwlock, val);
|
|
return;
|
|
}
|
|
rwlock->lock = 1 << _WR_NEXT_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* arch_read_trylock() - try to acquire a read lock.
|
|
*/
|
|
static inline int arch_read_trylock(arch_rwlock_t *rwlock)
|
|
{
|
|
int locked;
|
|
u32 val = __insn_tns((int *)&rwlock->lock);
|
|
if (unlikely(val & 1)) {
|
|
return arch_read_trylock_slow(rwlock);
|
|
}
|
|
locked = (val << _RD_COUNT_WIDTH) == 0;
|
|
rwlock->lock = val + (locked << _RD_COUNT_SHIFT);
|
|
return locked;
|
|
}
|
|
|
|
/**
|
|
* arch_write_trylock() - try to acquire a write lock.
|
|
*/
|
|
static inline int arch_write_trylock(arch_rwlock_t *rwlock)
|
|
{
|
|
u32 val = __insn_tns((int *)&rwlock->lock);
|
|
|
|
/*
|
|
* If a tns is in progress, or there's a waiting or active locker,
|
|
* or active readers, we can't take the lock, so give up.
|
|
*/
|
|
if (unlikely(val != 0)) {
|
|
if (!(val & 1))
|
|
rwlock->lock = val;
|
|
return 0;
|
|
}
|
|
|
|
/* Set the "next" field to mark it locked. */
|
|
rwlock->lock = 1 << _WR_NEXT_SHIFT;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* arch_read_unlock() - release a read lock.
|
|
*/
|
|
static inline void arch_read_unlock(arch_rwlock_t *rwlock)
|
|
{
|
|
u32 val;
|
|
mb(); /* guarantee anything modified under the lock is visible */
|
|
val = __insn_tns((int *)&rwlock->lock);
|
|
if (unlikely(val & 1)) {
|
|
arch_read_unlock_slow(rwlock);
|
|
return;
|
|
}
|
|
rwlock->lock = val - (1 << _RD_COUNT_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* arch_write_unlock() - release a write lock.
|
|
*/
|
|
static inline void arch_write_unlock(arch_rwlock_t *rwlock)
|
|
{
|
|
u32 val;
|
|
mb(); /* guarantee anything modified under the lock is visible */
|
|
val = __insn_tns((int *)&rwlock->lock);
|
|
if (unlikely(val != (1 << _WR_NEXT_SHIFT))) {
|
|
arch_write_unlock_slow(rwlock, val);
|
|
return;
|
|
}
|
|
rwlock->lock = 0;
|
|
}
|
|
|
|
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
|
|
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
|
|
|
|
#endif /* _ASM_TILE_SPINLOCK_32_H */
|