linux-stable-rt/sound/pci/pcxhr/pcxhr_mixer.c

1271 lines
36 KiB
C

#define __NO_VERSION__
/*
* Driver for Digigram pcxhr compatible soundcards
*
* mixer callbacks
*
* Copyright (c) 2004 by Digigram <alsa@digigram.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include "pcxhr.h"
#include "pcxhr_hwdep.h"
#include "pcxhr_core.h"
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/asoundef.h>
#include "pcxhr_mixer.h"
#include "pcxhr_mix22.h"
#define PCXHR_LINE_CAPTURE_LEVEL_MIN 0 /* -112.0 dB */
#define PCXHR_LINE_CAPTURE_LEVEL_MAX 255 /* +15.5 dB */
#define PCXHR_LINE_CAPTURE_ZERO_LEVEL 224 /* 0.0 dB ( 0 dBu -> 0 dBFS ) */
#define PCXHR_LINE_PLAYBACK_LEVEL_MIN 0 /* -104.0 dB */
#define PCXHR_LINE_PLAYBACK_LEVEL_MAX 128 /* +24.0 dB */
#define PCXHR_LINE_PLAYBACK_ZERO_LEVEL 104 /* 0.0 dB ( 0 dBFS -> 0 dBu ) */
static const DECLARE_TLV_DB_SCALE(db_scale_analog_capture, -11200, 50, 1550);
static const DECLARE_TLV_DB_SCALE(db_scale_analog_playback, -10400, 100, 2400);
static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_capture, -11150, 50, 1600);
static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_playback, -2550, 50, 2400);
static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip,
int is_capture, int channel)
{
int err, vol;
struct pcxhr_rmh rmh;
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
if (is_capture) {
rmh.cmd[0] |= IO_NUM_REG_IN_ANA_LEVEL;
rmh.cmd[2] = chip->analog_capture_volume[channel];
} else {
rmh.cmd[0] |= IO_NUM_REG_OUT_ANA_LEVEL;
if (chip->analog_playback_active[channel])
vol = chip->analog_playback_volume[channel];
else
vol = PCXHR_LINE_PLAYBACK_LEVEL_MIN;
/* playback analog levels are inversed */
rmh.cmd[2] = PCXHR_LINE_PLAYBACK_LEVEL_MAX - vol;
}
rmh.cmd[1] = 1 << ((2 * chip->chip_idx) + channel); /* audio mask */
rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err < 0) {
snd_printk(KERN_DEBUG "error update_analog_audio_level card(%d)"
" is_capture(%d) err(%x)\n",
chip->chip_idx, is_capture, err);
return -EINVAL;
}
return 0;
}
/*
* analog level control
*/
static int pcxhr_analog_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
if (kcontrol->private_value == 0) { /* playback */
if (chip->mgr->is_hr_stereo) {
uinfo->value.integer.min =
HR222_LINE_PLAYBACK_LEVEL_MIN; /* -25 dB */
uinfo->value.integer.max =
HR222_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */
} else {
uinfo->value.integer.min =
PCXHR_LINE_PLAYBACK_LEVEL_MIN; /*-104 dB */
uinfo->value.integer.max =
PCXHR_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */
}
} else { /* capture */
if (chip->mgr->is_hr_stereo) {
uinfo->value.integer.min =
HR222_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */
uinfo->value.integer.max =
HR222_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */
} else {
uinfo->value.integer.min =
PCXHR_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */
uinfo->value.integer.max =
PCXHR_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */
}
}
return 0;
}
static int pcxhr_analog_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
if (kcontrol->private_value == 0) { /* playback */
ucontrol->value.integer.value[0] = chip->analog_playback_volume[0];
ucontrol->value.integer.value[1] = chip->analog_playback_volume[1];
} else { /* capture */
ucontrol->value.integer.value[0] = chip->analog_capture_volume[0];
ucontrol->value.integer.value[1] = chip->analog_capture_volume[1];
}
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_analog_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
int is_capture, i;
mutex_lock(&chip->mgr->mixer_mutex);
is_capture = (kcontrol->private_value != 0);
for (i = 0; i < 2; i++) {
int new_volume = ucontrol->value.integer.value[i];
int *stored_volume = is_capture ?
&chip->analog_capture_volume[i] :
&chip->analog_playback_volume[i];
if (is_capture) {
if (chip->mgr->is_hr_stereo) {
if (new_volume < HR222_LINE_CAPTURE_LEVEL_MIN ||
new_volume > HR222_LINE_CAPTURE_LEVEL_MAX)
continue;
} else {
if (new_volume < PCXHR_LINE_CAPTURE_LEVEL_MIN ||
new_volume > PCXHR_LINE_CAPTURE_LEVEL_MAX)
continue;
}
} else {
if (chip->mgr->is_hr_stereo) {
if (new_volume < HR222_LINE_PLAYBACK_LEVEL_MIN ||
new_volume > HR222_LINE_PLAYBACK_LEVEL_MAX)
continue;
} else {
if (new_volume < PCXHR_LINE_PLAYBACK_LEVEL_MIN ||
new_volume > PCXHR_LINE_PLAYBACK_LEVEL_MAX)
continue;
}
}
if (*stored_volume != new_volume) {
*stored_volume = new_volume;
changed = 1;
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip,
is_capture, i);
else
pcxhr_update_analog_audio_level(chip,
is_capture, i);
}
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new pcxhr_control_analog_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
/* name will be filled later */
.info = pcxhr_analog_vol_info,
.get = pcxhr_analog_vol_get,
.put = pcxhr_analog_vol_put,
/* tlv will be filled later */
};
/* shared */
#define pcxhr_sw_info snd_ctl_boolean_stereo_info
static int pcxhr_audio_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->analog_playback_active[0];
ucontrol->value.integer.value[1] = chip->analog_playback_active[1];
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_audio_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int i, changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
for(i = 0; i < 2; i++) {
if (chip->analog_playback_active[i] !=
ucontrol->value.integer.value[i]) {
chip->analog_playback_active[i] =
!!ucontrol->value.integer.value[i];
changed = 1;
/* update playback levels */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 0, i);
else
pcxhr_update_analog_audio_level(chip, 0, i);
}
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new pcxhr_control_output_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = pcxhr_sw_info, /* shared */
.get = pcxhr_audio_sw_get,
.put = pcxhr_audio_sw_put
};
#define PCXHR_DIGITAL_LEVEL_MIN 0x000 /* -110 dB */
#define PCXHR_DIGITAL_LEVEL_MAX 0x1ff /* +18 dB */
#define PCXHR_DIGITAL_ZERO_LEVEL 0x1b7 /* 0 dB */
static const DECLARE_TLV_DB_SCALE(db_scale_digital, -10975, 25, 1800);
#define MORE_THAN_ONE_STREAM_LEVEL 0x000001
#define VALID_STREAM_PAN_LEVEL_MASK 0x800000
#define VALID_STREAM_LEVEL_MASK 0x400000
#define VALID_STREAM_LEVEL_1_MASK 0x200000
#define VALID_STREAM_LEVEL_2_MASK 0x100000
static int pcxhr_update_playback_stream_level(struct snd_pcxhr* chip, int idx)
{
int err;
struct pcxhr_rmh rmh;
struct pcxhr_pipe *pipe = &chip->playback_pipe;
int left, right;
if (chip->digital_playback_active[idx][0])
left = chip->digital_playback_volume[idx][0];
else
left = PCXHR_DIGITAL_LEVEL_MIN;
if (chip->digital_playback_active[idx][1])
right = chip->digital_playback_volume[idx][1];
else
right = PCXHR_DIGITAL_LEVEL_MIN;
pcxhr_init_rmh(&rmh, CMD_STREAM_OUT_LEVEL_ADJUST);
/* add pipe and stream mask */
pcxhr_set_pipe_cmd_params(&rmh, 0, pipe->first_audio, 0, 1<<idx);
/* volume left->left / right->right panoramic level */
rmh.cmd[0] |= MORE_THAN_ONE_STREAM_LEVEL;
rmh.cmd[2] = VALID_STREAM_PAN_LEVEL_MASK | VALID_STREAM_LEVEL_1_MASK;
rmh.cmd[2] |= (left << 10);
rmh.cmd[3] = VALID_STREAM_PAN_LEVEL_MASK | VALID_STREAM_LEVEL_2_MASK;
rmh.cmd[3] |= right;
rmh.cmd_len = 4;
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err < 0) {
snd_printk(KERN_DEBUG "error update_playback_stream_level "
"card(%d) err(%x)\n", chip->chip_idx, err);
return -EINVAL;
}
return 0;
}
#define AUDIO_IO_HAS_MUTE_LEVEL 0x400000
#define AUDIO_IO_HAS_MUTE_MONITOR_1 0x200000
#define VALID_AUDIO_IO_DIGITAL_LEVEL 0x000001
#define VALID_AUDIO_IO_MONITOR_LEVEL 0x000002
#define VALID_AUDIO_IO_MUTE_LEVEL 0x000004
#define VALID_AUDIO_IO_MUTE_MONITOR_1 0x000008
static int pcxhr_update_audio_pipe_level(struct snd_pcxhr *chip,
int capture, int channel)
{
int err;
struct pcxhr_rmh rmh;
struct pcxhr_pipe *pipe;
if (capture)
pipe = &chip->capture_pipe[0];
else
pipe = &chip->playback_pipe;
pcxhr_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
/* add channel mask */
pcxhr_set_pipe_cmd_params(&rmh, capture, 0, 0,
1 << (channel + pipe->first_audio));
/* TODO : if mask (3 << pipe->first_audio) is used, left and right
* channel will be programmed to the same params */
if (capture) {
rmh.cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
/* VALID_AUDIO_IO_MUTE_LEVEL not yet handled
* (capture pipe level) */
rmh.cmd[2] = chip->digital_capture_volume[channel];
} else {
rmh.cmd[0] |= VALID_AUDIO_IO_MONITOR_LEVEL |
VALID_AUDIO_IO_MUTE_MONITOR_1;
/* VALID_AUDIO_IO_DIGITAL_LEVEL and VALID_AUDIO_IO_MUTE_LEVEL
* not yet handled (playback pipe level)
*/
rmh.cmd[2] = chip->monitoring_volume[channel] << 10;
if (chip->monitoring_active[channel] == 0)
rmh.cmd[2] |= AUDIO_IO_HAS_MUTE_MONITOR_1;
}
rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err < 0) {
snd_printk(KERN_DEBUG "error update_audio_level(%d) err=%x\n",
chip->chip_idx, err);
return -EINVAL;
}
return 0;
}
/* shared */
static int pcxhr_digital_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = PCXHR_DIGITAL_LEVEL_MIN; /* -109.5 dB */
uinfo->value.integer.max = PCXHR_DIGITAL_LEVEL_MAX; /* 18.0 dB */
return 0;
}
static int pcxhr_pcm_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */
int *stored_volume;
int is_capture = kcontrol->private_value;
mutex_lock(&chip->mgr->mixer_mutex);
if (is_capture) /* digital capture */
stored_volume = chip->digital_capture_volume;
else /* digital playback */
stored_volume = chip->digital_playback_volume[idx];
ucontrol->value.integer.value[0] = stored_volume[0];
ucontrol->value.integer.value[1] = stored_volume[1];
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_pcm_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */
int changed = 0;
int is_capture = kcontrol->private_value;
int *stored_volume;
int i;
mutex_lock(&chip->mgr->mixer_mutex);
if (is_capture) /* digital capture */
stored_volume = chip->digital_capture_volume;
else /* digital playback */
stored_volume = chip->digital_playback_volume[idx];
for (i = 0; i < 2; i++) {
int vol = ucontrol->value.integer.value[i];
if (vol < PCXHR_DIGITAL_LEVEL_MIN ||
vol > PCXHR_DIGITAL_LEVEL_MAX)
continue;
if (stored_volume[i] != vol) {
stored_volume[i] = vol;
changed = 1;
if (is_capture) /* update capture volume */
pcxhr_update_audio_pipe_level(chip, 1, i);
}
}
if (!is_capture && changed) /* update playback volume */
pcxhr_update_playback_stream_level(chip, idx);
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new snd_pcxhr_pcm_vol =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
/* name will be filled later */
/* count will be filled later */
.info = pcxhr_digital_vol_info, /* shared */
.get = pcxhr_pcm_vol_get,
.put = pcxhr_pcm_vol_put,
.tlv = { .p = db_scale_digital },
};
static int pcxhr_pcm_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->digital_playback_active[idx][0];
ucontrol->value.integer.value[1] = chip->digital_playback_active[idx][1];
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_pcm_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */
int i, j;
mutex_lock(&chip->mgr->mixer_mutex);
j = idx;
for (i = 0; i < 2; i++) {
if (chip->digital_playback_active[j][i] !=
ucontrol->value.integer.value[i]) {
chip->digital_playback_active[j][i] =
!!ucontrol->value.integer.value[i];
changed = 1;
}
}
if (changed)
pcxhr_update_playback_stream_level(chip, idx);
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new pcxhr_control_pcm_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Switch",
.count = PCXHR_PLAYBACK_STREAMS,
.info = pcxhr_sw_info, /* shared */
.get = pcxhr_pcm_sw_get,
.put = pcxhr_pcm_sw_put
};
/*
* monitoring level control
*/
static int pcxhr_monitor_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->monitoring_volume[0];
ucontrol->value.integer.value[1] = chip->monitoring_volume[1];
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_monitor_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
int i;
mutex_lock(&chip->mgr->mixer_mutex);
for (i = 0; i < 2; i++) {
if (chip->monitoring_volume[i] !=
ucontrol->value.integer.value[i]) {
chip->monitoring_volume[i] =
ucontrol->value.integer.value[i];
if (chip->monitoring_active[i])
/* update monitoring volume and mute */
/* do only when monitoring is unmuted */
pcxhr_update_audio_pipe_level(chip, 0, i);
changed = 1;
}
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new pcxhr_control_monitor_vol = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Monitoring Playback Volume",
.info = pcxhr_digital_vol_info, /* shared */
.get = pcxhr_monitor_vol_get,
.put = pcxhr_monitor_vol_put,
.tlv = { .p = db_scale_digital },
};
/*
* monitoring switch control
*/
static int pcxhr_monitor_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->monitoring_active[0];
ucontrol->value.integer.value[1] = chip->monitoring_active[1];
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_monitor_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
int i;
mutex_lock(&chip->mgr->mixer_mutex);
for (i = 0; i < 2; i++) {
if (chip->monitoring_active[i] !=
ucontrol->value.integer.value[i]) {
chip->monitoring_active[i] =
!!ucontrol->value.integer.value[i];
changed |= (1<<i); /* mask 0x01 and 0x02 */
}
}
if (changed & 0x01)
/* update left monitoring volume and mute */
pcxhr_update_audio_pipe_level(chip, 0, 0);
if (changed & 0x02)
/* update right monitoring volume and mute */
pcxhr_update_audio_pipe_level(chip, 0, 1);
mutex_unlock(&chip->mgr->mixer_mutex);
return (changed != 0);
}
static struct snd_kcontrol_new pcxhr_control_monitor_sw = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitoring Playback Switch",
.info = pcxhr_sw_info, /* shared */
.get = pcxhr_monitor_sw_get,
.put = pcxhr_monitor_sw_put
};
/*
* audio source select
*/
#define PCXHR_SOURCE_AUDIO01_UER 0x000100
#define PCXHR_SOURCE_AUDIO01_SYNC 0x000200
#define PCXHR_SOURCE_AUDIO23_UER 0x000400
#define PCXHR_SOURCE_AUDIO45_UER 0x001000
#define PCXHR_SOURCE_AUDIO67_UER 0x040000
static int pcxhr_set_audio_source(struct snd_pcxhr* chip)
{
struct pcxhr_rmh rmh;
unsigned int mask, reg;
unsigned int codec;
int err, changed;
switch (chip->chip_idx) {
case 0 : mask = PCXHR_SOURCE_AUDIO01_UER; codec = CS8420_01_CS; break;
case 1 : mask = PCXHR_SOURCE_AUDIO23_UER; codec = CS8420_23_CS; break;
case 2 : mask = PCXHR_SOURCE_AUDIO45_UER; codec = CS8420_45_CS; break;
case 3 : mask = PCXHR_SOURCE_AUDIO67_UER; codec = CS8420_67_CS; break;
default: return -EINVAL;
}
if (chip->audio_capture_source != 0) {
reg = mask; /* audio source from digital plug */
} else {
reg = 0; /* audio source from analog plug */
}
/* set the input source */
pcxhr_write_io_num_reg_cont(chip->mgr, mask, reg, &changed);
/* resync them (otherwise channel inversion possible) */
if (changed) {
pcxhr_init_rmh(&rmh, CMD_RESYNC_AUDIO_INPUTS);
rmh.cmd[0] |= (1 << chip->chip_idx);
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err)
return err;
}
if (chip->mgr->board_aes_in_192k) {
int i;
unsigned int src_config = 0xC0;
/* update all src configs with one call */
for (i = 0; (i < 4) && (i < chip->mgr->capture_chips); i++) {
if (chip->mgr->chip[i]->audio_capture_source == 2)
src_config |= (1 << (3 - i));
}
/* set codec SRC on off */
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
rmh.cmd_len = 2;
rmh.cmd[0] |= IO_NUM_REG_CONFIG_SRC;
rmh.cmd[1] = src_config;
err = pcxhr_send_msg(chip->mgr, &rmh);
} else {
int use_src = 0;
if (chip->audio_capture_source == 2)
use_src = 1;
/* set codec SRC on off */
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
rmh.cmd_len = 3;
rmh.cmd[0] |= IO_NUM_UER_CHIP_REG;
rmh.cmd[1] = codec;
rmh.cmd[2] = ((CS8420_DATA_FLOW_CTL & CHIP_SIG_AND_MAP_SPI) |
(use_src ? 0x41 : 0x54));
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err)
return err;
rmh.cmd[2] = ((CS8420_CLOCK_SRC_CTL & CHIP_SIG_AND_MAP_SPI) |
(use_src ? 0x41 : 0x49));
err = pcxhr_send_msg(chip->mgr, &rmh);
}
return err;
}
static int pcxhr_audio_src_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *texts[5] = {
"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"
};
int i;
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
i = 2; /* no SRC, no Mic available */
if (chip->mgr->board_has_aes1) {
i = 3; /* SRC available */
if (chip->mgr->board_has_mic)
i = 5; /* Mic and MicroMix available */
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = i;
if (uinfo->value.enumerated.item > (i-1))
uinfo->value.enumerated.item = i-1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int pcxhr_audio_src_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = chip->audio_capture_source;
return 0;
}
static int pcxhr_audio_src_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int ret = 0;
int i = 2; /* no SRC, no Mic available */
if (chip->mgr->board_has_aes1) {
i = 3; /* SRC available */
if (chip->mgr->board_has_mic)
i = 5; /* Mic and MicroMix available */
}
if (ucontrol->value.enumerated.item[0] >= i)
return -EINVAL;
mutex_lock(&chip->mgr->mixer_mutex);
if (chip->audio_capture_source != ucontrol->value.enumerated.item[0]) {
chip->audio_capture_source = ucontrol->value.enumerated.item[0];
if (chip->mgr->is_hr_stereo)
hr222_set_audio_source(chip);
else
pcxhr_set_audio_source(chip);
ret = 1;
}
mutex_unlock(&chip->mgr->mixer_mutex);
return ret;
}
static struct snd_kcontrol_new pcxhr_control_audio_src = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = pcxhr_audio_src_info,
.get = pcxhr_audio_src_get,
.put = pcxhr_audio_src_put,
};
/*
* clock type selection
* enum pcxhr_clock_type {
* PCXHR_CLOCK_TYPE_INTERNAL = 0,
* PCXHR_CLOCK_TYPE_WORD_CLOCK,
* PCXHR_CLOCK_TYPE_AES_SYNC,
* PCXHR_CLOCK_TYPE_AES_1,
* PCXHR_CLOCK_TYPE_AES_2,
* PCXHR_CLOCK_TYPE_AES_3,
* PCXHR_CLOCK_TYPE_AES_4,
* PCXHR_CLOCK_TYPE_MAX = PCXHR_CLOCK_TYPE_AES_4,
* HR22_CLOCK_TYPE_INTERNAL = PCXHR_CLOCK_TYPE_INTERNAL,
* HR22_CLOCK_TYPE_AES_SYNC,
* HR22_CLOCK_TYPE_AES_1,
* HR22_CLOCK_TYPE_MAX = HR22_CLOCK_TYPE_AES_1,
* };
*/
static int pcxhr_clock_type_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *textsPCXHR[7] = {
"Internal", "WordClock", "AES Sync",
"AES 1", "AES 2", "AES 3", "AES 4"
};
static const char *textsHR22[3] = {
"Internal", "AES Sync", "AES 1"
};
const char **texts;
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
int clock_items = 2; /* at least Internal and AES Sync clock */
if (mgr->board_has_aes1) {
clock_items += mgr->capture_chips; /* add AES x */
if (!mgr->is_hr_stereo)
clock_items += 1; /* add word clock */
}
if (mgr->is_hr_stereo) {
texts = textsHR22;
snd_BUG_ON(clock_items > (HR22_CLOCK_TYPE_MAX+1));
} else {
texts = textsPCXHR;
snd_BUG_ON(clock_items > (PCXHR_CLOCK_TYPE_MAX+1));
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = clock_items;
if (uinfo->value.enumerated.item >= clock_items)
uinfo->value.enumerated.item = clock_items-1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int pcxhr_clock_type_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = mgr->use_clock_type;
return 0;
}
static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
int rate, ret = 0;
unsigned int clock_items = 2; /* at least Internal and AES Sync clock */
if (mgr->board_has_aes1) {
clock_items += mgr->capture_chips; /* add AES x */
if (!mgr->is_hr_stereo)
clock_items += 1; /* add word clock */
}
if (ucontrol->value.enumerated.item[0] >= clock_items)
return -EINVAL;
mutex_lock(&mgr->mixer_mutex);
if (mgr->use_clock_type != ucontrol->value.enumerated.item[0]) {
mutex_lock(&mgr->setup_mutex);
mgr->use_clock_type = ucontrol->value.enumerated.item[0];
rate = 0;
if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
pcxhr_get_external_clock(mgr, mgr->use_clock_type,
&rate);
} else {
rate = mgr->sample_rate;
if (!rate)
rate = 48000;
}
if (rate) {
pcxhr_set_clock(mgr, rate);
if (mgr->sample_rate)
mgr->sample_rate = rate;
}
mutex_unlock(&mgr->setup_mutex);
ret = 1; /* return 1 even if the set was not done. ok ? */
}
mutex_unlock(&mgr->mixer_mutex);
return ret;
}
static struct snd_kcontrol_new pcxhr_control_clock_type = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Clock Mode",
.info = pcxhr_clock_type_info,
.get = pcxhr_clock_type_get,
.put = pcxhr_clock_type_put,
};
/*
* clock rate control
* specific control that scans the sample rates on the external plugs
*/
static int pcxhr_clock_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 3 + mgr->capture_chips;
uinfo->value.integer.min = 0; /* clock not present */
uinfo->value.integer.max = 192000; /* max sample rate 192 kHz */
return 0;
}
static int pcxhr_clock_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
int i, err, rate;
mutex_lock(&mgr->mixer_mutex);
for(i = 0; i < 3 + mgr->capture_chips; i++) {
if (i == PCXHR_CLOCK_TYPE_INTERNAL)
rate = mgr->sample_rate_real;
else {
err = pcxhr_get_external_clock(mgr, i, &rate);
if (err)
break;
}
ucontrol->value.integer.value[i] = rate;
}
mutex_unlock(&mgr->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new pcxhr_control_clock_rate = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "Clock Rates",
.info = pcxhr_clock_rate_info,
.get = pcxhr_clock_rate_get,
};
/*
* IEC958 status bits
*/
static int pcxhr_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char *aes_bits)
{
int i, err;
unsigned char temp;
struct pcxhr_rmh rmh;
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
rmh.cmd[0] |= IO_NUM_UER_CHIP_REG;
switch (chip->chip_idx) {
/* instead of CS8420_01_CS use CS8416_01_CS for AES SYNC plug */
case 0: rmh.cmd[1] = CS8420_01_CS; break;
case 1: rmh.cmd[1] = CS8420_23_CS; break;
case 2: rmh.cmd[1] = CS8420_45_CS; break;
case 3: rmh.cmd[1] = CS8420_67_CS; break;
default: return -EINVAL;
}
if (chip->mgr->board_aes_in_192k) {
switch (aes_idx) {
case 0: rmh.cmd[2] = CS8416_CSB0; break;
case 1: rmh.cmd[2] = CS8416_CSB1; break;
case 2: rmh.cmd[2] = CS8416_CSB2; break;
case 3: rmh.cmd[2] = CS8416_CSB3; break;
case 4: rmh.cmd[2] = CS8416_CSB4; break;
default: return -EINVAL;
}
} else {
switch (aes_idx) {
/* instead of CS8420_CSB0 use CS8416_CSBx for AES SYNC plug */
case 0: rmh.cmd[2] = CS8420_CSB0; break;
case 1: rmh.cmd[2] = CS8420_CSB1; break;
case 2: rmh.cmd[2] = CS8420_CSB2; break;
case 3: rmh.cmd[2] = CS8420_CSB3; break;
case 4: rmh.cmd[2] = CS8420_CSB4; break;
default: return -EINVAL;
}
}
/* size and code the chip id for the fpga */
rmh.cmd[1] &= 0x0fffff;
/* chip signature + map for spi read */
rmh.cmd[2] &= CHIP_SIG_AND_MAP_SPI;
rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err)
return err;
if (chip->mgr->board_aes_in_192k) {
temp = (unsigned char)rmh.stat[1];
} else {
temp = 0;
/* reversed bit order (not with CS8416_01_CS) */
for (i = 0; i < 8; i++) {
temp <<= 1;
if (rmh.stat[1] & (1 << i))
temp |= 1;
}
}
snd_printdd("read iec958 AES %d byte %d = 0x%x\n",
chip->chip_idx, aes_idx, temp);
*aes_bits = temp;
return 0;
}
static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
unsigned char aes_bits;
int i, err;
mutex_lock(&chip->mgr->mixer_mutex);
for(i = 0; i < 5; i++) {
if (kcontrol->private_value == 0) /* playback */
aes_bits = chip->aes_bits[i];
else { /* capture */
if (chip->mgr->is_hr_stereo)
err = hr222_iec958_capture_byte(chip, i,
&aes_bits);
else
err = pcxhr_iec958_capture_byte(chip, i,
&aes_bits);
if (err)
break;
}
ucontrol->value.iec958.status[i] = aes_bits;
}
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int pcxhr_iec958_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int i;
for (i = 0; i < 5; i++)
ucontrol->value.iec958.status[i] = 0xff;
return 0;
}
static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char aes_bits)
{
int i, err, cmd;
unsigned char new_bits = aes_bits;
unsigned char old_bits = chip->aes_bits[aes_idx];
struct pcxhr_rmh rmh;
for (i = 0; i < 8; i++) {
if ((old_bits & 0x01) != (new_bits & 0x01)) {
cmd = chip->chip_idx & 0x03; /* chip index 0..3 */
if (chip->chip_idx > 3)
/* new bit used if chip_idx>3 (PCX1222HR) */
cmd |= 1 << 22;
cmd |= ((aes_idx << 3) + i) << 2; /* add bit offset */
cmd |= (new_bits & 0x01) << 23; /* add bit value */
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
rmh.cmd[0] |= IO_NUM_REG_CUER;
rmh.cmd[1] = cmd;
rmh.cmd_len = 2;
snd_printdd("write iec958 AES %d byte %d bit %d (cmd %x)\n",
chip->chip_idx, aes_idx, i, cmd);
err = pcxhr_send_msg(chip->mgr, &rmh);
if (err)
return err;
}
old_bits >>= 1;
new_bits >>= 1;
}
chip->aes_bits[aes_idx] = aes_bits;
return 0;
}
static int pcxhr_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int i, changed = 0;
/* playback */
mutex_lock(&chip->mgr->mixer_mutex);
for (i = 0; i < 5; i++) {
if (ucontrol->value.iec958.status[i] != chip->aes_bits[i]) {
if (chip->mgr->is_hr_stereo)
hr222_iec958_update_byte(chip, i,
ucontrol->value.iec958.status[i]);
else
pcxhr_iec958_update_byte(chip, i,
ucontrol->value.iec958.status[i]);
changed = 1;
}
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new pcxhr_control_playback_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.info = pcxhr_iec958_info,
.get = pcxhr_iec958_mask_get
};
static struct snd_kcontrol_new pcxhr_control_playback_iec958 = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = pcxhr_iec958_info,
.get = pcxhr_iec958_get,
.put = pcxhr_iec958_put,
.private_value = 0 /* playback */
};
static struct snd_kcontrol_new pcxhr_control_capture_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK),
.info = pcxhr_iec958_info,
.get = pcxhr_iec958_mask_get
};
static struct snd_kcontrol_new pcxhr_control_capture_iec958 = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.info = pcxhr_iec958_info,
.get = pcxhr_iec958_get,
.private_value = 1 /* capture */
};
static void pcxhr_init_audio_levels(struct snd_pcxhr *chip)
{
int i;
for (i = 0; i < 2; i++) {
if (chip->nb_streams_play) {
int j;
/* at boot time the digital volumes are unmuted 0dB */
for (j = 0; j < PCXHR_PLAYBACK_STREAMS; j++) {
chip->digital_playback_active[j][i] = 1;
chip->digital_playback_volume[j][i] =
PCXHR_DIGITAL_ZERO_LEVEL;
}
/* after boot, only two bits are set on the uer
* interface
*/
chip->aes_bits[0] = (IEC958_AES0_PROFESSIONAL |
IEC958_AES0_PRO_FS_48000);
#ifdef CONFIG_SND_DEBUG
/* analog volumes for playback
* (is LEVEL_MIN after boot)
*/
chip->analog_playback_active[i] = 1;
if (chip->mgr->is_hr_stereo)
chip->analog_playback_volume[i] =
HR222_LINE_PLAYBACK_ZERO_LEVEL;
else {
chip->analog_playback_volume[i] =
PCXHR_LINE_PLAYBACK_ZERO_LEVEL;
pcxhr_update_analog_audio_level(chip, 0, i);
}
#endif
/* stereo cards need to be initialised after boot */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 0, i);
}
if (chip->nb_streams_capt) {
/* at boot time the digital volumes are unmuted 0dB */
chip->digital_capture_volume[i] =
PCXHR_DIGITAL_ZERO_LEVEL;
chip->analog_capture_active = 1;
#ifdef CONFIG_SND_DEBUG
/* analog volumes for playback
* (is LEVEL_MIN after boot)
*/
if (chip->mgr->is_hr_stereo)
chip->analog_capture_volume[i] =
HR222_LINE_CAPTURE_ZERO_LEVEL;
else {
chip->analog_capture_volume[i] =
PCXHR_LINE_CAPTURE_ZERO_LEVEL;
pcxhr_update_analog_audio_level(chip, 1, i);
}
#endif
/* stereo cards need to be initialised after boot */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 1, i);
}
}
return;
}
int pcxhr_create_mixer(struct pcxhr_mgr *mgr)
{
struct snd_pcxhr *chip;
int err, i;
mutex_init(&mgr->mixer_mutex); /* can be in another place */
for (i = 0; i < mgr->num_cards; i++) {
struct snd_kcontrol_new temp;
chip = mgr->chip[i];
if (chip->nb_streams_play) {
/* analog output level control */
temp = pcxhr_control_analog_level;
temp.name = "Master Playback Volume";
temp.private_value = 0; /* playback */
if (mgr->is_hr_stereo)
temp.tlv.p = db_scale_a_hr222_playback;
else
temp.tlv.p = db_scale_analog_playback;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err;
/* output mute controls */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_output_switch,
chip));
if (err < 0)
return err;
temp = snd_pcxhr_pcm_vol;
temp.name = "PCM Playback Volume";
temp.count = PCXHR_PLAYBACK_STREAMS;
temp.private_value = 0; /* playback */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_pcm_switch, chip));
if (err < 0)
return err;
/* IEC958 controls */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_playback_iec958_mask,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_playback_iec958,
chip));
if (err < 0)
return err;
}
if (chip->nb_streams_capt) {
/* analog input level control */
temp = pcxhr_control_analog_level;
temp.name = "Line Capture Volume";
temp.private_value = 1; /* capture */
if (mgr->is_hr_stereo)
temp.tlv.p = db_scale_a_hr222_capture;
else
temp.tlv.p = db_scale_analog_capture;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err;
temp = snd_pcxhr_pcm_vol;
temp.name = "PCM Capture Volume";
temp.count = 1;
temp.private_value = 1; /* capture */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err;
/* Audio source */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_audio_src, chip));
if (err < 0)
return err;
/* IEC958 controls */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_capture_iec958_mask,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_capture_iec958,
chip));
if (err < 0)
return err;
if (mgr->is_hr_stereo) {
err = hr222_add_mic_controls(chip);
if (err < 0)
return err;
}
}
/* monitoring only if playback and capture device available */
if (chip->nb_streams_capt > 0 && chip->nb_streams_play > 0) {
/* monitoring */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_monitor_vol, chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_monitor_sw, chip));
if (err < 0)
return err;
}
if (i == 0) {
/* clock mode only one control per pcxhr */
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_clock_type, mgr));
if (err < 0)
return err;
/* non standard control used to scan
* the external clock presence/frequencies
*/
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_clock_rate, mgr));
if (err < 0)
return err;
}
/* init values for the mixer data */
pcxhr_init_audio_levels(chip);
}
return 0;
}