558 lines
15 KiB
ArmAsm
558 lines
15 KiB
ArmAsm
/*
|
|
* linux/arch/arm/kernel/head.S
|
|
*
|
|
* Copyright (C) 1994-2002 Russell King
|
|
* Copyright (c) 2003 ARM Limited
|
|
* All Rights Reserved
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Kernel startup code for all 32-bit CPUs
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/assembler.h>
|
|
#include <asm/domain.h>
|
|
#include <asm/mach-types.h>
|
|
#include <asm/procinfo.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/constants.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/system.h>
|
|
|
|
#define PROCINFO_MMUFLAGS 8
|
|
#define PROCINFO_INITFUNC 12
|
|
|
|
#define MACHINFO_TYPE 0
|
|
#define MACHINFO_PHYSRAM 4
|
|
#define MACHINFO_PHYSIO 8
|
|
#define MACHINFO_PGOFFIO 12
|
|
#define MACHINFO_NAME 16
|
|
|
|
#ifndef CONFIG_XIP_KERNEL
|
|
/*
|
|
* We place the page tables 16K below TEXTADDR. Therefore, we must make sure
|
|
* that TEXTADDR is correctly set. Currently, we expect the least significant
|
|
* 16 bits to be 0x8000, but we could probably relax this restriction to
|
|
* TEXTADDR >= PAGE_OFFSET + 0x4000
|
|
*
|
|
* Note that swapper_pg_dir is the virtual address of the page tables, and
|
|
* pgtbl gives us a position-independent reference to these tables. We can
|
|
* do this because stext == TEXTADDR
|
|
*/
|
|
#if (TEXTADDR & 0xffff) != 0x8000
|
|
#error TEXTADDR must start at 0xXXXX8000
|
|
#endif
|
|
|
|
.globl swapper_pg_dir
|
|
.equ swapper_pg_dir, TEXTADDR - 0x4000
|
|
|
|
.macro pgtbl, rd, phys
|
|
adr \rd, stext
|
|
sub \rd, \rd, #0x4000
|
|
.endm
|
|
#else
|
|
/*
|
|
* XIP Kernel:
|
|
*
|
|
* We place the page tables 16K below DATAADDR. Therefore, we must make sure
|
|
* that DATAADDR is correctly set. Currently, we expect the least significant
|
|
* 16 bits to be 0x8000, but we could probably relax this restriction to
|
|
* DATAADDR >= PAGE_OFFSET + 0x4000
|
|
*
|
|
* Note that pgtbl is meant to return the physical address of swapper_pg_dir.
|
|
* We can't make it relative to the kernel position in this case since
|
|
* the kernel can physically be anywhere.
|
|
*/
|
|
#if (DATAADDR & 0xffff) != 0x8000
|
|
#error DATAADDR must start at 0xXXXX8000
|
|
#endif
|
|
|
|
.globl swapper_pg_dir
|
|
.equ swapper_pg_dir, DATAADDR - 0x4000
|
|
|
|
.macro pgtbl, rd, phys
|
|
ldr \rd, =((DATAADDR - 0x4000) - VIRT_OFFSET)
|
|
add \rd, \rd, \phys
|
|
.endm
|
|
#endif
|
|
|
|
/*
|
|
* Kernel startup entry point.
|
|
* ---------------------------
|
|
*
|
|
* This is normally called from the decompressor code. The requirements
|
|
* are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
|
|
* r1 = machine nr.
|
|
*
|
|
* This code is mostly position independent, so if you link the kernel at
|
|
* 0xc0008000, you call this at __pa(0xc0008000).
|
|
*
|
|
* See linux/arch/arm/tools/mach-types for the complete list of machine
|
|
* numbers for r1.
|
|
*
|
|
* We're trying to keep crap to a minimum; DO NOT add any machine specific
|
|
* crap here - that's what the boot loader (or in extreme, well justified
|
|
* circumstances, zImage) is for.
|
|
*/
|
|
__INIT
|
|
.type stext, %function
|
|
ENTRY(stext)
|
|
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode
|
|
@ and irqs disabled
|
|
bl __lookup_processor_type @ r5=procinfo r9=cpuid
|
|
movs r10, r5 @ invalid processor (r5=0)?
|
|
beq __error_p @ yes, error 'p'
|
|
bl __lookup_machine_type @ r5=machinfo
|
|
movs r8, r5 @ invalid machine (r5=0)?
|
|
beq __error_a @ yes, error 'a'
|
|
bl __create_page_tables
|
|
|
|
/*
|
|
* The following calls CPU specific code in a position independent
|
|
* manner. See arch/arm/mm/proc-*.S for details. r10 = base of
|
|
* xxx_proc_info structure selected by __lookup_machine_type
|
|
* above. On return, the CPU will be ready for the MMU to be
|
|
* turned on, and r0 will hold the CPU control register value.
|
|
*/
|
|
ldr r13, __switch_data @ address to jump to after
|
|
@ mmu has been enabled
|
|
adr lr, __enable_mmu @ return (PIC) address
|
|
add pc, r10, #PROCINFO_INITFUNC
|
|
|
|
.type __switch_data, %object
|
|
__switch_data:
|
|
.long __mmap_switched
|
|
.long __data_loc @ r4
|
|
.long __data_start @ r5
|
|
.long __bss_start @ r6
|
|
.long _end @ r7
|
|
.long processor_id @ r4
|
|
.long __machine_arch_type @ r5
|
|
.long cr_alignment @ r6
|
|
.long init_thread_union + THREAD_START_SP @ sp
|
|
|
|
/*
|
|
* The following fragment of code is executed with the MMU on, and uses
|
|
* absolute addresses; this is not position independent.
|
|
*
|
|
* r0 = cp#15 control register
|
|
* r1 = machine ID
|
|
* r9 = processor ID
|
|
*/
|
|
.type __mmap_switched, %function
|
|
__mmap_switched:
|
|
adr r3, __switch_data + 4
|
|
|
|
ldmia r3!, {r4, r5, r6, r7}
|
|
cmp r4, r5 @ Copy data segment if needed
|
|
1: cmpne r5, r6
|
|
ldrne fp, [r4], #4
|
|
strne fp, [r5], #4
|
|
bne 1b
|
|
|
|
mov fp, #0 @ Clear BSS (and zero fp)
|
|
1: cmp r6, r7
|
|
strcc fp, [r6],#4
|
|
bcc 1b
|
|
|
|
ldmia r3, {r4, r5, r6, sp}
|
|
str r9, [r4] @ Save processor ID
|
|
str r1, [r5] @ Save machine type
|
|
bic r4, r0, #CR_A @ Clear 'A' bit
|
|
stmia r6, {r0, r4} @ Save control register values
|
|
b start_kernel
|
|
|
|
#if defined(CONFIG_SMP)
|
|
.type secondary_startup, #function
|
|
ENTRY(secondary_startup)
|
|
/*
|
|
* Common entry point for secondary CPUs.
|
|
*
|
|
* Ensure that we're in SVC mode, and IRQs are disabled. Lookup
|
|
* the processor type - there is no need to check the machine type
|
|
* as it has already been validated by the primary processor.
|
|
*/
|
|
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC
|
|
bl __lookup_processor_type
|
|
movs r10, r5 @ invalid processor?
|
|
moveq r0, #'p' @ yes, error 'p'
|
|
beq __error
|
|
|
|
/*
|
|
* Use the page tables supplied from __cpu_up.
|
|
*/
|
|
adr r4, __secondary_data
|
|
ldmia r4, {r5, r6, r13} @ address to jump to after
|
|
sub r4, r4, r5 @ mmu has been enabled
|
|
ldr r4, [r6, r4] @ get secondary_data.pgdir
|
|
adr lr, __enable_mmu @ return address
|
|
add pc, r10, #12 @ initialise processor
|
|
@ (return control reg)
|
|
|
|
/*
|
|
* r6 = &secondary_data
|
|
*/
|
|
ENTRY(__secondary_switched)
|
|
ldr sp, [r6, #4] @ get secondary_data.stack
|
|
mov fp, #0
|
|
b secondary_start_kernel
|
|
|
|
.type __secondary_data, %object
|
|
__secondary_data:
|
|
.long .
|
|
.long secondary_data
|
|
.long __secondary_switched
|
|
#endif /* defined(CONFIG_SMP) */
|
|
|
|
|
|
|
|
/*
|
|
* Setup common bits before finally enabling the MMU. Essentially
|
|
* this is just loading the page table pointer and domain access
|
|
* registers.
|
|
*/
|
|
.type __enable_mmu, %function
|
|
__enable_mmu:
|
|
#ifdef CONFIG_ALIGNMENT_TRAP
|
|
orr r0, r0, #CR_A
|
|
#else
|
|
bic r0, r0, #CR_A
|
|
#endif
|
|
#ifdef CONFIG_CPU_DCACHE_DISABLE
|
|
bic r0, r0, #CR_C
|
|
#endif
|
|
#ifdef CONFIG_CPU_BPREDICT_DISABLE
|
|
bic r0, r0, #CR_Z
|
|
#endif
|
|
#ifdef CONFIG_CPU_ICACHE_DISABLE
|
|
bic r0, r0, #CR_I
|
|
#endif
|
|
mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
|
|
domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
|
|
domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
|
|
domain_val(DOMAIN_IO, DOMAIN_CLIENT))
|
|
mcr p15, 0, r5, c3, c0, 0 @ load domain access register
|
|
mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
|
|
b __turn_mmu_on
|
|
|
|
/*
|
|
* Enable the MMU. This completely changes the structure of the visible
|
|
* memory space. You will not be able to trace execution through this.
|
|
* If you have an enquiry about this, *please* check the linux-arm-kernel
|
|
* mailing list archives BEFORE sending another post to the list.
|
|
*
|
|
* r0 = cp#15 control register
|
|
* r13 = *virtual* address to jump to upon completion
|
|
*
|
|
* other registers depend on the function called upon completion
|
|
*/
|
|
.align 5
|
|
.type __turn_mmu_on, %function
|
|
__turn_mmu_on:
|
|
mov r0, r0
|
|
mcr p15, 0, r0, c1, c0, 0 @ write control reg
|
|
mrc p15, 0, r3, c0, c0, 0 @ read id reg
|
|
mov r3, r3
|
|
mov r3, r3
|
|
mov pc, r13
|
|
|
|
|
|
|
|
/*
|
|
* Setup the initial page tables. We only setup the barest
|
|
* amount which are required to get the kernel running, which
|
|
* generally means mapping in the kernel code.
|
|
*
|
|
* r8 = machinfo
|
|
* r9 = cpuid
|
|
* r10 = procinfo
|
|
*
|
|
* Returns:
|
|
* r0, r3, r5, r6, r7 corrupted
|
|
* r4 = physical page table address
|
|
*/
|
|
.type __create_page_tables, %function
|
|
__create_page_tables:
|
|
ldr r5, [r8, #MACHINFO_PHYSRAM] @ physram
|
|
pgtbl r4, r5 @ page table address
|
|
|
|
/*
|
|
* Clear the 16K level 1 swapper page table
|
|
*/
|
|
mov r0, r4
|
|
mov r3, #0
|
|
add r6, r0, #0x4000
|
|
1: str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
teq r0, r6
|
|
bne 1b
|
|
|
|
ldr r7, [r10, #PROCINFO_MMUFLAGS] @ mmuflags
|
|
|
|
/*
|
|
* Create identity mapping for first MB of kernel to
|
|
* cater for the MMU enable. This identity mapping
|
|
* will be removed by paging_init(). We use our current program
|
|
* counter to determine corresponding section base address.
|
|
*/
|
|
mov r6, pc, lsr #20 @ start of kernel section
|
|
orr r3, r7, r6, lsl #20 @ flags + kernel base
|
|
str r3, [r4, r6, lsl #2] @ identity mapping
|
|
|
|
/*
|
|
* Now setup the pagetables for our kernel direct
|
|
* mapped region. We round TEXTADDR down to the
|
|
* nearest megabyte boundary. It is assumed that
|
|
* the kernel fits within 4 contigous 1MB sections.
|
|
*/
|
|
add r0, r4, #(TEXTADDR & 0xff000000) >> 18 @ start of kernel
|
|
str r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
|
|
add r3, r3, #1 << 20
|
|
str r3, [r0, #4]! @ KERNEL + 1MB
|
|
add r3, r3, #1 << 20
|
|
str r3, [r0, #4]! @ KERNEL + 2MB
|
|
add r3, r3, #1 << 20
|
|
str r3, [r0, #4] @ KERNEL + 3MB
|
|
|
|
/*
|
|
* Then map first 1MB of ram in case it contains our boot params.
|
|
*/
|
|
add r0, r4, #VIRT_OFFSET >> 18
|
|
orr r6, r5, r7
|
|
str r6, [r0]
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
/*
|
|
* Map some ram to cover our .data and .bss areas.
|
|
* Mapping 3MB should be plenty.
|
|
*/
|
|
sub r3, r4, r5
|
|
mov r3, r3, lsr #20
|
|
add r0, r0, r3, lsl #2
|
|
add r6, r6, r3, lsl #20
|
|
str r6, [r0], #4
|
|
add r6, r6, #(1 << 20)
|
|
str r6, [r0], #4
|
|
add r6, r6, #(1 << 20)
|
|
str r6, [r0]
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_LL
|
|
bic r7, r7, #0x0c @ turn off cacheable
|
|
@ and bufferable bits
|
|
/*
|
|
* Map in IO space for serial debugging.
|
|
* This allows debug messages to be output
|
|
* via a serial console before paging_init.
|
|
*/
|
|
ldr r3, [r8, #MACHINFO_PGOFFIO]
|
|
add r0, r4, r3
|
|
rsb r3, r3, #0x4000 @ PTRS_PER_PGD*sizeof(long)
|
|
cmp r3, #0x0800 @ limit to 512MB
|
|
movhi r3, #0x0800
|
|
add r6, r0, r3
|
|
ldr r3, [r8, #MACHINFO_PHYSIO]
|
|
orr r3, r3, r7
|
|
1: str r3, [r0], #4
|
|
add r3, r3, #1 << 20
|
|
teq r0, r6
|
|
bne 1b
|
|
#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
|
|
/*
|
|
* If we're using the NetWinder, we need to map in
|
|
* the 16550-type serial port for the debug messages
|
|
*/
|
|
teq r1, #MACH_TYPE_NETWINDER
|
|
teqne r1, #MACH_TYPE_CATS
|
|
bne 1f
|
|
add r0, r4, #0xff000000 >> 18
|
|
orr r3, r7, #0x7c000000
|
|
str r3, [r0]
|
|
1:
|
|
#endif
|
|
#ifdef CONFIG_ARCH_RPC
|
|
/*
|
|
* Map in screen at 0x02000000 & SCREEN2_BASE
|
|
* Similar reasons here - for debug. This is
|
|
* only for Acorn RiscPC architectures.
|
|
*/
|
|
add r0, r4, #0x02000000 >> 18
|
|
orr r3, r7, #0x02000000
|
|
str r3, [r0]
|
|
add r0, r4, #0xd8000000 >> 18
|
|
str r3, [r0]
|
|
#endif
|
|
#endif
|
|
mov pc, lr
|
|
.ltorg
|
|
|
|
|
|
|
|
/*
|
|
* Exception handling. Something went wrong and we can't proceed. We
|
|
* ought to tell the user, but since we don't have any guarantee that
|
|
* we're even running on the right architecture, we do virtually nothing.
|
|
*
|
|
* If CONFIG_DEBUG_LL is set we try to print out something about the error
|
|
* and hope for the best (useful if bootloader fails to pass a proper
|
|
* machine ID for example).
|
|
*/
|
|
|
|
.type __error_p, %function
|
|
__error_p:
|
|
#ifdef CONFIG_DEBUG_LL
|
|
adr r0, str_p1
|
|
bl printascii
|
|
b __error
|
|
str_p1: .asciz "\nError: unrecognized/unsupported processor variant.\n"
|
|
.align
|
|
#endif
|
|
|
|
.type __error_a, %function
|
|
__error_a:
|
|
#ifdef CONFIG_DEBUG_LL
|
|
mov r4, r1 @ preserve machine ID
|
|
adr r0, str_a1
|
|
bl printascii
|
|
mov r0, r4
|
|
bl printhex8
|
|
adr r0, str_a2
|
|
bl printascii
|
|
adr r3, 3f
|
|
ldmia r3, {r4, r5, r6} @ get machine desc list
|
|
sub r4, r3, r4 @ get offset between virt&phys
|
|
add r5, r5, r4 @ convert virt addresses to
|
|
add r6, r6, r4 @ physical address space
|
|
1: ldr r0, [r5, #MACHINFO_TYPE] @ get machine type
|
|
bl printhex8
|
|
mov r0, #'\t'
|
|
bl printch
|
|
ldr r0, [r5, #MACHINFO_NAME] @ get machine name
|
|
add r0, r0, r4
|
|
bl printascii
|
|
mov r0, #'\n'
|
|
bl printch
|
|
add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
|
|
cmp r5, r6
|
|
blo 1b
|
|
adr r0, str_a3
|
|
bl printascii
|
|
b __error
|
|
str_a1: .asciz "\nError: unrecognized/unsupported machine ID (r1 = 0x"
|
|
str_a2: .asciz ").\n\nAvailable machine support:\n\nID (hex)\tNAME\n"
|
|
str_a3: .asciz "\nPlease check your kernel config and/or bootloader.\n"
|
|
.align
|
|
#endif
|
|
|
|
.type __error, %function
|
|
__error:
|
|
#ifdef CONFIG_ARCH_RPC
|
|
/*
|
|
* Turn the screen red on a error - RiscPC only.
|
|
*/
|
|
mov r0, #0x02000000
|
|
mov r3, #0x11
|
|
orr r3, r3, r3, lsl #8
|
|
orr r3, r3, r3, lsl #16
|
|
str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
str r3, [r0], #4
|
|
#endif
|
|
1: mov r0, r0
|
|
b 1b
|
|
|
|
|
|
/*
|
|
* Read processor ID register (CP#15, CR0), and look up in the linker-built
|
|
* supported processor list. Note that we can't use the absolute addresses
|
|
* for the __proc_info lists since we aren't running with the MMU on
|
|
* (and therefore, we are not in the correct address space). We have to
|
|
* calculate the offset.
|
|
*
|
|
* Returns:
|
|
* r3, r4, r6 corrupted
|
|
* r5 = proc_info pointer in physical address space
|
|
* r9 = cpuid
|
|
*/
|
|
.type __lookup_processor_type, %function
|
|
__lookup_processor_type:
|
|
adr r3, 3f
|
|
ldmda r3, {r5, r6, r9}
|
|
sub r3, r3, r9 @ get offset between virt&phys
|
|
add r5, r5, r3 @ convert virt addresses to
|
|
add r6, r6, r3 @ physical address space
|
|
mrc p15, 0, r9, c0, c0 @ get processor id
|
|
1: ldmia r5, {r3, r4} @ value, mask
|
|
and r4, r4, r9 @ mask wanted bits
|
|
teq r3, r4
|
|
beq 2f
|
|
add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
|
|
cmp r5, r6
|
|
blo 1b
|
|
mov r5, #0 @ unknown processor
|
|
2: mov pc, lr
|
|
|
|
/*
|
|
* This provides a C-API version of the above function.
|
|
*/
|
|
ENTRY(lookup_processor_type)
|
|
stmfd sp!, {r4 - r6, r9, lr}
|
|
bl __lookup_processor_type
|
|
mov r0, r5
|
|
ldmfd sp!, {r4 - r6, r9, pc}
|
|
|
|
/*
|
|
* Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
|
|
* more information about the __proc_info and __arch_info structures.
|
|
*/
|
|
.long __proc_info_begin
|
|
.long __proc_info_end
|
|
3: .long .
|
|
.long __arch_info_begin
|
|
.long __arch_info_end
|
|
|
|
/*
|
|
* Lookup machine architecture in the linker-build list of architectures.
|
|
* Note that we can't use the absolute addresses for the __arch_info
|
|
* lists since we aren't running with the MMU on (and therefore, we are
|
|
* not in the correct address space). We have to calculate the offset.
|
|
*
|
|
* r1 = machine architecture number
|
|
* Returns:
|
|
* r3, r4, r6 corrupted
|
|
* r5 = mach_info pointer in physical address space
|
|
*/
|
|
.type __lookup_machine_type, %function
|
|
__lookup_machine_type:
|
|
adr r3, 3b
|
|
ldmia r3, {r4, r5, r6}
|
|
sub r3, r3, r4 @ get offset between virt&phys
|
|
add r5, r5, r3 @ convert virt addresses to
|
|
add r6, r6, r3 @ physical address space
|
|
1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
|
|
teq r3, r1 @ matches loader number?
|
|
beq 2f @ found
|
|
add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
|
|
cmp r5, r6
|
|
blo 1b
|
|
mov r5, #0 @ unknown machine
|
|
2: mov pc, lr
|
|
|
|
/*
|
|
* This provides a C-API version of the above function.
|
|
*/
|
|
ENTRY(lookup_machine_type)
|
|
stmfd sp!, {r4 - r6, lr}
|
|
mov r1, r0
|
|
bl __lookup_machine_type
|
|
mov r0, r5
|
|
ldmfd sp!, {r4 - r6, pc}
|