linux-stable-rt/block/blk-core.c

2114 lines
56 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
* - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blktrace_api.h>
#include <linux/fault-inject.h>
#include "blk.h"
static int __make_request(struct request_queue *q, struct bio *bio);
/*
* For the allocated request tables
*/
static struct kmem_cache *request_cachep;
/*
* For queue allocation
*/
struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
static void drive_stat_acct(struct request *rq, int new_io)
{
struct hd_struct *part;
int rw = rq_data_dir(rq);
int cpu;
if (!blk_fs_request(rq) || !rq->rq_disk)
return;
cpu = part_stat_lock();
part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
if (!new_io)
part_stat_inc(cpu, part, merges[rw]);
else {
part_round_stats(cpu, part);
part_inc_in_flight(part);
}
part_stat_unlock();
}
void blk_queue_congestion_threshold(struct request_queue *q)
{
int nr;
nr = q->nr_requests - (q->nr_requests / 8) + 1;
if (nr > q->nr_requests)
nr = q->nr_requests;
q->nr_congestion_on = nr;
nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
if (nr < 1)
nr = 1;
q->nr_congestion_off = nr;
}
/**
* blk_get_backing_dev_info - get the address of a queue's backing_dev_info
* @bdev: device
*
* Locates the passed device's request queue and returns the address of its
* backing_dev_info
*
* Will return NULL if the request queue cannot be located.
*/
struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
{
struct backing_dev_info *ret = NULL;
struct request_queue *q = bdev_get_queue(bdev);
if (q)
ret = &q->backing_dev_info;
return ret;
}
EXPORT_SYMBOL(blk_get_backing_dev_info);
void blk_rq_init(struct request_queue *q, struct request *rq)
{
memset(rq, 0, sizeof(*rq));
INIT_LIST_HEAD(&rq->queuelist);
INIT_LIST_HEAD(&rq->timeout_list);
rq->cpu = -1;
rq->q = q;
rq->sector = rq->hard_sector = (sector_t) -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->cmd = rq->__cmd;
rq->tag = -1;
rq->ref_count = 1;
}
EXPORT_SYMBOL(blk_rq_init);
static void req_bio_endio(struct request *rq, struct bio *bio,
unsigned int nbytes, int error)
{
struct request_queue *q = rq->q;
if (&q->bar_rq != rq) {
if (error)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
error = -EIO;
if (unlikely(nbytes > bio->bi_size)) {
printk(KERN_ERR "%s: want %u bytes done, %u left\n",
__func__, nbytes, bio->bi_size);
nbytes = bio->bi_size;
}
bio->bi_size -= nbytes;
bio->bi_sector += (nbytes >> 9);
if (bio_integrity(bio))
bio_integrity_advance(bio, nbytes);
if (bio->bi_size == 0)
bio_endio(bio, error);
} else {
/*
* Okay, this is the barrier request in progress, just
* record the error;
*/
if (error && !q->orderr)
q->orderr = error;
}
}
void blk_dump_rq_flags(struct request *rq, char *msg)
{
int bit;
printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
rq->cmd_flags);
printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
(unsigned long long)rq->sector,
rq->nr_sectors,
rq->current_nr_sectors);
printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
rq->bio, rq->biotail,
rq->buffer, rq->data,
rq->data_len);
if (blk_pc_request(rq)) {
printk(KERN_INFO " cdb: ");
for (bit = 0; bit < BLK_MAX_CDB; bit++)
printk("%02x ", rq->cmd[bit]);
printk("\n");
}
}
EXPORT_SYMBOL(blk_dump_rq_flags);
/*
* "plug" the device if there are no outstanding requests: this will
* force the transfer to start only after we have put all the requests
* on the list.
*
* This is called with interrupts off and no requests on the queue and
* with the queue lock held.
*/
void blk_plug_device(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
/*
* don't plug a stopped queue, it must be paired with blk_start_queue()
* which will restart the queueing
*/
if (blk_queue_stopped(q))
return;
if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
}
}
EXPORT_SYMBOL(blk_plug_device);
/**
* blk_plug_device_unlocked - plug a device without queue lock held
* @q: The &struct request_queue to plug
*
* Description:
* Like @blk_plug_device(), but grabs the queue lock and disables
* interrupts.
**/
void blk_plug_device_unlocked(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
blk_plug_device(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_plug_device_unlocked);
/*
* remove the queue from the plugged list, if present. called with
* queue lock held and interrupts disabled.
*/
int blk_remove_plug(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
return 0;
del_timer(&q->unplug_timer);
return 1;
}
EXPORT_SYMBOL(blk_remove_plug);
/*
* remove the plug and let it rip..
*/
void __generic_unplug_device(struct request_queue *q)
{
if (unlikely(blk_queue_stopped(q)))
return;
if (!blk_remove_plug(q))
return;
q->request_fn(q);
}
EXPORT_SYMBOL(__generic_unplug_device);
/**
* generic_unplug_device - fire a request queue
* @q: The &struct request_queue in question
*
* Description:
* Linux uses plugging to build bigger requests queues before letting
* the device have at them. If a queue is plugged, the I/O scheduler
* is still adding and merging requests on the queue. Once the queue
* gets unplugged, the request_fn defined for the queue is invoked and
* transfers started.
**/
void generic_unplug_device(struct request_queue *q)
{
if (blk_queue_plugged(q)) {
spin_lock_irq(q->queue_lock);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
}
}
EXPORT_SYMBOL(generic_unplug_device);
static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
struct page *page)
{
struct request_queue *q = bdi->unplug_io_data;
blk_unplug(q);
}
void blk_unplug_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, unplug_work);
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
q->unplug_fn(q);
}
void blk_unplug_timeout(unsigned long data)
{
struct request_queue *q = (struct request_queue *)data;
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
kblockd_schedule_work(q, &q->unplug_work);
}
void blk_unplug(struct request_queue *q)
{
/*
* devices don't necessarily have an ->unplug_fn defined
*/
if (q->unplug_fn) {
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
q->unplug_fn(q);
}
}
EXPORT_SYMBOL(blk_unplug);
static void blk_invoke_request_fn(struct request_queue *q)
{
/*
* one level of recursion is ok and is much faster than kicking
* the unplug handling
*/
if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
q->request_fn(q);
queue_flag_clear(QUEUE_FLAG_REENTER, q);
} else {
queue_flag_set(QUEUE_FLAG_PLUGGED, q);
kblockd_schedule_work(q, &q->unplug_work);
}
}
/**
* blk_start_queue - restart a previously stopped queue
* @q: The &struct request_queue in question
*
* Description:
* blk_start_queue() will clear the stop flag on the queue, and call
* the request_fn for the queue if it was in a stopped state when
* entered. Also see blk_stop_queue(). Queue lock must be held.
**/
void blk_start_queue(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
queue_flag_clear(QUEUE_FLAG_STOPPED, q);
blk_invoke_request_fn(q);
}
EXPORT_SYMBOL(blk_start_queue);
/**
* blk_stop_queue - stop a queue
* @q: The &struct request_queue in question
*
* Description:
* The Linux block layer assumes that a block driver will consume all
* entries on the request queue when the request_fn strategy is called.
* Often this will not happen, because of hardware limitations (queue
* depth settings). If a device driver gets a 'queue full' response,
* or if it simply chooses not to queue more I/O at one point, it can
* call this function to prevent the request_fn from being called until
* the driver has signalled it's ready to go again. This happens by calling
* blk_start_queue() to restart queue operations. Queue lock must be held.
**/
void blk_stop_queue(struct request_queue *q)
{
blk_remove_plug(q);
queue_flag_set(QUEUE_FLAG_STOPPED, q);
}
EXPORT_SYMBOL(blk_stop_queue);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
* that its ->make_request_fn will not re-add plugging prior to calling
* this function.
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->unplug_timer);
kblockd_flush_work(&q->unplug_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* blk_run_queue - run a single device queue
* @q: The queue to run
*/
void __blk_run_queue(struct request_queue *q)
{
blk_remove_plug(q);
/*
* Only recurse once to avoid overrunning the stack, let the unplug
* handling reinvoke the handler shortly if we already got there.
*/
if (!elv_queue_empty(q))
blk_invoke_request_fn(q);
}
EXPORT_SYMBOL(__blk_run_queue);
/**
* blk_run_queue - run a single device queue
* @q: The queue to run
*/
void blk_run_queue(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__blk_run_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_run_queue);
void blk_put_queue(struct request_queue *q)
{
kobject_put(&q->kobj);
}
void blk_cleanup_queue(struct request_queue *q)
{
/*
* We know we have process context here, so we can be a little
* cautious and ensure that pending block actions on this device
* are done before moving on. Going into this function, we should
* not have processes doing IO to this device.
*/
blk_sync_queue(q);
mutex_lock(&q->sysfs_lock);
queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
mutex_unlock(&q->sysfs_lock);
if (q->elevator)
elevator_exit(q->elevator);
blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);
static int blk_init_free_list(struct request_queue *q)
{
struct request_list *rl = &q->rq;
rl->count[READ] = rl->count[WRITE] = 0;
rl->starved[READ] = rl->starved[WRITE] = 0;
rl->elvpriv = 0;
init_waitqueue_head(&rl->wait[READ]);
init_waitqueue_head(&rl->wait[WRITE]);
rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
mempool_free_slab, request_cachep, q->node);
if (!rl->rq_pool)
return -ENOMEM;
return 0;
}
struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
{
return blk_alloc_queue_node(gfp_mask, -1);
}
EXPORT_SYMBOL(blk_alloc_queue);
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
struct request_queue *q;
int err;
q = kmem_cache_alloc_node(blk_requestq_cachep,
gfp_mask | __GFP_ZERO, node_id);
if (!q)
return NULL;
q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
q->backing_dev_info.unplug_io_data = q;
err = bdi_init(&q->backing_dev_info);
if (err) {
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
init_timer(&q->unplug_timer);
setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
INIT_LIST_HEAD(&q->timeout_list);
kobject_init(&q->kobj, &blk_queue_ktype);
mutex_init(&q->sysfs_lock);
spin_lock_init(&q->__queue_lock);
return q;
}
EXPORT_SYMBOL(blk_alloc_queue_node);
/**
* blk_init_queue - prepare a request queue for use with a block device
* @rfn: The function to be called to process requests that have been
* placed on the queue.
* @lock: Request queue spin lock
*
* Description:
* If a block device wishes to use the standard request handling procedures,
* which sorts requests and coalesces adjacent requests, then it must
* call blk_init_queue(). The function @rfn will be called when there
* are requests on the queue that need to be processed. If the device
* supports plugging, then @rfn may not be called immediately when requests
* are available on the queue, but may be called at some time later instead.
* Plugged queues are generally unplugged when a buffer belonging to one
* of the requests on the queue is needed, or due to memory pressure.
*
* @rfn is not required, or even expected, to remove all requests off the
* queue, but only as many as it can handle at a time. If it does leave
* requests on the queue, it is responsible for arranging that the requests
* get dealt with eventually.
*
* The queue spin lock must be held while manipulating the requests on the
* request queue; this lock will be taken also from interrupt context, so irq
* disabling is needed for it.
*
* Function returns a pointer to the initialized request queue, or %NULL if
* it didn't succeed.
*
* Note:
* blk_init_queue() must be paired with a blk_cleanup_queue() call
* when the block device is deactivated (such as at module unload).
**/
struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
{
return blk_init_queue_node(rfn, lock, -1);
}
EXPORT_SYMBOL(blk_init_queue);
struct request_queue *
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
{
struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
if (!q)
return NULL;
q->node = node_id;
if (blk_init_free_list(q)) {
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
/*
* if caller didn't supply a lock, they get per-queue locking with
* our embedded lock
*/
if (!lock)
lock = &q->__queue_lock;
q->request_fn = rfn;
q->prep_rq_fn = NULL;
q->unplug_fn = generic_unplug_device;
q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
1 << QUEUE_FLAG_STACKABLE);
q->queue_lock = lock;
blk_queue_segment_boundary(q, 0xffffffff);
blk_queue_make_request(q, __make_request);
blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
q->sg_reserved_size = INT_MAX;
blk_set_cmd_filter_defaults(&q->cmd_filter);
/*
* all done
*/
if (!elevator_init(q, NULL)) {
blk_queue_congestion_threshold(q);
return q;
}
blk_put_queue(q);
return NULL;
}
EXPORT_SYMBOL(blk_init_queue_node);
int blk_get_queue(struct request_queue *q)
{
if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
kobject_get(&q->kobj);
return 0;
}
return 1;
}
static inline void blk_free_request(struct request_queue *q, struct request *rq)
{
if (rq->cmd_flags & REQ_ELVPRIV)
elv_put_request(q, rq);
mempool_free(rq, q->rq.rq_pool);
}
static struct request *
blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
{
struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
if (!rq)
return NULL;
blk_rq_init(q, rq);
rq->cmd_flags = rw | REQ_ALLOCED;
if (priv) {
if (unlikely(elv_set_request(q, rq, gfp_mask))) {
mempool_free(rq, q->rq.rq_pool);
return NULL;
}
rq->cmd_flags |= REQ_ELVPRIV;
}
return rq;
}
/*
* ioc_batching returns true if the ioc is a valid batching request and
* should be given priority access to a request.
*/
static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
{
if (!ioc)
return 0;
/*
* Make sure the process is able to allocate at least 1 request
* even if the batch times out, otherwise we could theoretically
* lose wakeups.
*/
return ioc->nr_batch_requests == q->nr_batching ||
(ioc->nr_batch_requests > 0
&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
}
/*
* ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
* will cause the process to be a "batcher" on all queues in the system. This
* is the behaviour we want though - once it gets a wakeup it should be given
* a nice run.
*/
static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
{
if (!ioc || ioc_batching(q, ioc))
return;
ioc->nr_batch_requests = q->nr_batching;
ioc->last_waited = jiffies;
}
static void __freed_request(struct request_queue *q, int rw)
{
struct request_list *rl = &q->rq;
if (rl->count[rw] < queue_congestion_off_threshold(q))
blk_clear_queue_congested(q, rw);
if (rl->count[rw] + 1 <= q->nr_requests) {
if (waitqueue_active(&rl->wait[rw]))
wake_up(&rl->wait[rw]);
blk_clear_queue_full(q, rw);
}
}
/*
* A request has just been released. Account for it, update the full and
* congestion status, wake up any waiters. Called under q->queue_lock.
*/
static void freed_request(struct request_queue *q, int rw, int priv)
{
struct request_list *rl = &q->rq;
rl->count[rw]--;
if (priv)
rl->elvpriv--;
__freed_request(q, rw);
if (unlikely(rl->starved[rw ^ 1]))
__freed_request(q, rw ^ 1);
}
#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
/*
* Get a free request, queue_lock must be held.
* Returns NULL on failure, with queue_lock held.
* Returns !NULL on success, with queue_lock *not held*.
*/
static struct request *get_request(struct request_queue *q, int rw_flags,
struct bio *bio, gfp_t gfp_mask)
{
struct request *rq = NULL;
struct request_list *rl = &q->rq;
struct io_context *ioc = NULL;
const int rw = rw_flags & 0x01;
int may_queue, priv;
may_queue = elv_may_queue(q, rw_flags);
if (may_queue == ELV_MQUEUE_NO)
goto rq_starved;
if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
if (rl->count[rw]+1 >= q->nr_requests) {
ioc = current_io_context(GFP_ATOMIC, q->node);
/*
* The queue will fill after this allocation, so set
* it as full, and mark this process as "batching".
* This process will be allowed to complete a batch of
* requests, others will be blocked.
*/
if (!blk_queue_full(q, rw)) {
ioc_set_batching(q, ioc);
blk_set_queue_full(q, rw);
} else {
if (may_queue != ELV_MQUEUE_MUST
&& !ioc_batching(q, ioc)) {
/*
* The queue is full and the allocating
* process is not a "batcher", and not
* exempted by the IO scheduler
*/
goto out;
}
}
}
blk_set_queue_congested(q, rw);
}
/*
* Only allow batching queuers to allocate up to 50% over the defined
* limit of requests, otherwise we could have thousands of requests
* allocated with any setting of ->nr_requests
*/
if (rl->count[rw] >= (3 * q->nr_requests / 2))
goto out;
rl->count[rw]++;
rl->starved[rw] = 0;
priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
if (priv)
rl->elvpriv++;
spin_unlock_irq(q->queue_lock);
rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
if (unlikely(!rq)) {
/*
* Allocation failed presumably due to memory. Undo anything
* we might have messed up.
*
* Allocating task should really be put onto the front of the
* wait queue, but this is pretty rare.
*/
spin_lock_irq(q->queue_lock);
freed_request(q, rw, priv);
/*
* in the very unlikely event that allocation failed and no
* requests for this direction was pending, mark us starved
* so that freeing of a request in the other direction will
* notice us. another possible fix would be to split the
* rq mempool into READ and WRITE
*/
rq_starved:
if (unlikely(rl->count[rw] == 0))
rl->starved[rw] = 1;
goto out;
}
/*
* ioc may be NULL here, and ioc_batching will be false. That's
* OK, if the queue is under the request limit then requests need
* not count toward the nr_batch_requests limit. There will always
* be some limit enforced by BLK_BATCH_TIME.
*/
if (ioc_batching(q, ioc))
ioc->nr_batch_requests--;
blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
out:
return rq;
}
/*
* No available requests for this queue, unplug the device and wait for some
* requests to become available.
*
* Called with q->queue_lock held, and returns with it unlocked.
*/
static struct request *get_request_wait(struct request_queue *q, int rw_flags,
struct bio *bio)
{
const int rw = rw_flags & 0x01;
struct request *rq;
rq = get_request(q, rw_flags, bio, GFP_NOIO);
while (!rq) {
DEFINE_WAIT(wait);
struct io_context *ioc;
struct request_list *rl = &q->rq;
prepare_to_wait_exclusive(&rl->wait[rw], &wait,
TASK_UNINTERRUPTIBLE);
blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
io_schedule();
/*
* After sleeping, we become a "batching" process and
* will be able to allocate at least one request, and
* up to a big batch of them for a small period time.
* See ioc_batching, ioc_set_batching
*/
ioc = current_io_context(GFP_NOIO, q->node);
ioc_set_batching(q, ioc);
spin_lock_irq(q->queue_lock);
finish_wait(&rl->wait[rw], &wait);
rq = get_request(q, rw_flags, bio, GFP_NOIO);
};
return rq;
}
struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
{
struct request *rq;
BUG_ON(rw != READ && rw != WRITE);
spin_lock_irq(q->queue_lock);
if (gfp_mask & __GFP_WAIT) {
rq = get_request_wait(q, rw, NULL);
} else {
rq = get_request(q, rw, NULL, gfp_mask);
if (!rq)
spin_unlock_irq(q->queue_lock);
}
/* q->queue_lock is unlocked at this point */
return rq;
}
EXPORT_SYMBOL(blk_get_request);
/**
* blk_start_queueing - initiate dispatch of requests to device
* @q: request queue to kick into gear
*
* This is basically a helper to remove the need to know whether a queue
* is plugged or not if someone just wants to initiate dispatch of requests
* for this queue.
*
* The queue lock must be held with interrupts disabled.
*/
void blk_start_queueing(struct request_queue *q)
{
if (!blk_queue_plugged(q)) {
if (unlikely(blk_queue_stopped(q)))
return;
q->request_fn(q);
} else
__generic_unplug_device(q);
}
EXPORT_SYMBOL(blk_start_queueing);
/**
* blk_requeue_request - put a request back on queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
*
* Description:
* Drivers often keep queueing requests until the hardware cannot accept
* more, when that condition happens we need to put the request back
* on the queue. Must be called with queue lock held.
*/
void blk_requeue_request(struct request_queue *q, struct request *rq)
{
blk_delete_timer(rq);
blk_clear_rq_complete(rq);
blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
if (blk_rq_tagged(rq))
blk_queue_end_tag(q, rq);
elv_requeue_request(q, rq);
}
EXPORT_SYMBOL(blk_requeue_request);
/**
* blk_insert_request - insert a special request into a request queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
* @at_head: insert request at head or tail of queue
* @data: private data
*
* Description:
* Many block devices need to execute commands asynchronously, so they don't
* block the whole kernel from preemption during request execution. This is
* accomplished normally by inserting aritficial requests tagged as
* REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
* be scheduled for actual execution by the request queue.
*
* We have the option of inserting the head or the tail of the queue.
* Typically we use the tail for new ioctls and so forth. We use the head
* of the queue for things like a QUEUE_FULL message from a device, or a
* host that is unable to accept a particular command.
*/
void blk_insert_request(struct request_queue *q, struct request *rq,
int at_head, void *data)
{
int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
unsigned long flags;
/*
* tell I/O scheduler that this isn't a regular read/write (ie it
* must not attempt merges on this) and that it acts as a soft
* barrier
*/
rq->cmd_type = REQ_TYPE_SPECIAL;
rq->cmd_flags |= REQ_SOFTBARRIER;
rq->special = data;
spin_lock_irqsave(q->queue_lock, flags);
/*
* If command is tagged, release the tag
*/
if (blk_rq_tagged(rq))
blk_queue_end_tag(q, rq);
drive_stat_acct(rq, 1);
__elv_add_request(q, rq, where, 0);
blk_start_queueing(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_insert_request);
/*
* add-request adds a request to the linked list.
* queue lock is held and interrupts disabled, as we muck with the
* request queue list.
*/
static inline void add_request(struct request_queue *q, struct request *req)
{
drive_stat_acct(req, 1);
/*
* elevator indicated where it wants this request to be
* inserted at elevator_merge time
*/
__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
}
static void part_round_stats_single(int cpu, struct hd_struct *part,
unsigned long now)
{
if (now == part->stamp)
return;
if (part->in_flight) {
__part_stat_add(cpu, part, time_in_queue,
part->in_flight * (now - part->stamp));
__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
}
part->stamp = now;
}
/**
* part_round_stats() - Round off the performance stats on a struct
* disk_stats.
*
* The average IO queue length and utilisation statistics are maintained
* by observing the current state of the queue length and the amount of
* time it has been in this state for.
*
* Normally, that accounting is done on IO completion, but that can result
* in more than a second's worth of IO being accounted for within any one
* second, leading to >100% utilisation. To deal with that, we call this
* function to do a round-off before returning the results when reading
* /proc/diskstats. This accounts immediately for all queue usage up to
* the current jiffies and restarts the counters again.
*/
void part_round_stats(int cpu, struct hd_struct *part)
{
unsigned long now = jiffies;
if (part->partno)
part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
part_round_stats_single(cpu, part, now);
}
EXPORT_SYMBOL_GPL(part_round_stats);
/*
* queue lock must be held
*/
void __blk_put_request(struct request_queue *q, struct request *req)
{
if (unlikely(!q))
return;
if (unlikely(--req->ref_count))
return;
elv_completed_request(q, req);
/*
* Request may not have originated from ll_rw_blk. if not,
* it didn't come out of our reserved rq pools
*/
if (req->cmd_flags & REQ_ALLOCED) {
int rw = rq_data_dir(req);
int priv = req->cmd_flags & REQ_ELVPRIV;
BUG_ON(!list_empty(&req->queuelist));
BUG_ON(!hlist_unhashed(&req->hash));
blk_free_request(q, req);
freed_request(q, rw, priv);
}
}
EXPORT_SYMBOL_GPL(__blk_put_request);
void blk_put_request(struct request *req)
{
unsigned long flags;
struct request_queue *q = req->q;
spin_lock_irqsave(q->queue_lock, flags);
__blk_put_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_put_request);
void init_request_from_bio(struct request *req, struct bio *bio)
{
req->cpu = bio->bi_comp_cpu;
req->cmd_type = REQ_TYPE_FS;
/*
* inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
*/
if (bio_rw_ahead(bio) || bio_failfast(bio))
req->cmd_flags |= REQ_FAILFAST;
/*
* REQ_BARRIER implies no merging, but lets make it explicit
*/
if (unlikely(bio_discard(bio))) {
req->cmd_flags |= REQ_DISCARD;
if (bio_barrier(bio))
req->cmd_flags |= REQ_SOFTBARRIER;
req->q->prepare_discard_fn(req->q, req);
} else if (unlikely(bio_barrier(bio)))
req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
if (bio_sync(bio))
req->cmd_flags |= REQ_RW_SYNC;
if (bio_rw_meta(bio))
req->cmd_flags |= REQ_RW_META;
req->errors = 0;
req->hard_sector = req->sector = bio->bi_sector;
req->ioprio = bio_prio(bio);
req->start_time = jiffies;
blk_rq_bio_prep(req->q, req, bio);
}
static int __make_request(struct request_queue *q, struct bio *bio)
{
struct request *req;
int el_ret, nr_sectors, barrier, discard, err;
const unsigned short prio = bio_prio(bio);
const int sync = bio_sync(bio);
int rw_flags;
nr_sectors = bio_sectors(bio);
/*
* low level driver can indicate that it wants pages above a
* certain limit bounced to low memory (ie for highmem, or even
* ISA dma in theory)
*/
blk_queue_bounce(q, &bio);
barrier = bio_barrier(bio);
if (unlikely(barrier) && bio_has_data(bio) &&
(q->next_ordered == QUEUE_ORDERED_NONE)) {
err = -EOPNOTSUPP;
goto end_io;
}
discard = bio_discard(bio);
if (unlikely(discard) && !q->prepare_discard_fn) {
err = -EOPNOTSUPP;
goto end_io;
}
spin_lock_irq(q->queue_lock);
if (unlikely(barrier) || elv_queue_empty(q))
goto get_rq;
el_ret = elv_merge(q, &req, bio);
switch (el_ret) {
case ELEVATOR_BACK_MERGE:
BUG_ON(!rq_mergeable(req));
if (!ll_back_merge_fn(q, req, bio))
break;
blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
req->biotail->bi_next = bio;
req->biotail = bio;
req->nr_sectors = req->hard_nr_sectors += nr_sectors;
req->ioprio = ioprio_best(req->ioprio, prio);
if (!blk_rq_cpu_valid(req))
req->cpu = bio->bi_comp_cpu;
drive_stat_acct(req, 0);
if (!attempt_back_merge(q, req))
elv_merged_request(q, req, el_ret);
goto out;
case ELEVATOR_FRONT_MERGE:
BUG_ON(!rq_mergeable(req));
if (!ll_front_merge_fn(q, req, bio))
break;
blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
bio->bi_next = req->bio;
req->bio = bio;
/*
* may not be valid. if the low level driver said
* it didn't need a bounce buffer then it better
* not touch req->buffer either...
*/
req->buffer = bio_data(bio);
req->current_nr_sectors = bio_cur_sectors(bio);
req->hard_cur_sectors = req->current_nr_sectors;
req->sector = req->hard_sector = bio->bi_sector;
req->nr_sectors = req->hard_nr_sectors += nr_sectors;
req->ioprio = ioprio_best(req->ioprio, prio);
if (!blk_rq_cpu_valid(req))
req->cpu = bio->bi_comp_cpu;
drive_stat_acct(req, 0);
if (!attempt_front_merge(q, req))
elv_merged_request(q, req, el_ret);
goto out;
/* ELV_NO_MERGE: elevator says don't/can't merge. */
default:
;
}
get_rq:
/*
* This sync check and mask will be re-done in init_request_from_bio(),
* but we need to set it earlier to expose the sync flag to the
* rq allocator and io schedulers.
*/
rw_flags = bio_data_dir(bio);
if (sync)
rw_flags |= REQ_RW_SYNC;
/*
* Grab a free request. This is might sleep but can not fail.
* Returns with the queue unlocked.
*/
req = get_request_wait(q, rw_flags, bio);
/*
* After dropping the lock and possibly sleeping here, our request
* may now be mergeable after it had proven unmergeable (above).
* We don't worry about that case for efficiency. It won't happen
* often, and the elevators are able to handle it.
*/
init_request_from_bio(req, bio);
spin_lock_irq(q->queue_lock);
if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
bio_flagged(bio, BIO_CPU_AFFINE))
req->cpu = blk_cpu_to_group(smp_processor_id());
if (elv_queue_empty(q))
blk_plug_device(q);
add_request(q, req);
out:
if (sync)
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
return 0;
end_io:
bio_endio(bio, err);
return 0;
}
/*
* If bio->bi_dev is a partition, remap the location
*/
static inline void blk_partition_remap(struct bio *bio)
{
struct block_device *bdev = bio->bi_bdev;
if (bio_sectors(bio) && bdev != bdev->bd_contains) {
struct hd_struct *p = bdev->bd_part;
bio->bi_sector += p->start_sect;
bio->bi_bdev = bdev->bd_contains;
blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
bdev->bd_dev, bio->bi_sector,
bio->bi_sector - p->start_sect);
}
}
static void handle_bad_sector(struct bio *bio)
{
char b[BDEVNAME_SIZE];
printk(KERN_INFO "attempt to access beyond end of device\n");
printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
bdevname(bio->bi_bdev, b),
bio->bi_rw,
(unsigned long long)bio->bi_sector + bio_sectors(bio),
(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
set_bit(BIO_EOF, &bio->bi_flags);
}
#ifdef CONFIG_FAIL_MAKE_REQUEST
static DECLARE_FAULT_ATTR(fail_make_request);
static int __init setup_fail_make_request(char *str)
{
return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);
static int should_fail_request(struct bio *bio)
{
struct hd_struct *part = bio->bi_bdev->bd_part;
if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
return should_fail(&fail_make_request, bio->bi_size);
return 0;
}
static int __init fail_make_request_debugfs(void)
{
return init_fault_attr_dentries(&fail_make_request,
"fail_make_request");
}
late_initcall(fail_make_request_debugfs);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline int should_fail_request(struct bio *bio)
{
return 0;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */
/*
* Check whether this bio extends beyond the end of the device.
*/
static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
{
sector_t maxsector;
if (!nr_sectors)
return 0;
/* Test device or partition size, when known. */
maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
if (maxsector) {
sector_t sector = bio->bi_sector;
if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
/*
* This may well happen - the kernel calls bread()
* without checking the size of the device, e.g., when
* mounting a device.
*/
handle_bad_sector(bio);
return 1;
}
}
return 0;
}
/**
* generic_make_request - hand a buffer to its device driver for I/O
* @bio: The bio describing the location in memory and on the device.
*
* generic_make_request() is used to make I/O requests of block
* devices. It is passed a &struct bio, which describes the I/O that needs
* to be done.
*
* generic_make_request() does not return any status. The
* success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the bio->bi_end_io
* function described (one day) else where.
*
* The caller of generic_make_request must make sure that bi_io_vec
* are set to describe the memory buffer, and that bi_dev and bi_sector are
* set to describe the device address, and the
* bi_end_io and optionally bi_private are set to describe how
* completion notification should be signaled.
*
* generic_make_request and the drivers it calls may use bi_next if this
* bio happens to be merged with someone else, and may change bi_dev and
* bi_sector for remaps as it sees fit. So the values of these fields
* should NOT be depended on after the call to generic_make_request.
*/
static inline void __generic_make_request(struct bio *bio)
{
struct request_queue *q;
sector_t old_sector;
int ret, nr_sectors = bio_sectors(bio);
dev_t old_dev;
int err = -EIO;
might_sleep();
if (bio_check_eod(bio, nr_sectors))
goto end_io;
/*
* Resolve the mapping until finished. (drivers are
* still free to implement/resolve their own stacking
* by explicitly returning 0)
*
* NOTE: we don't repeat the blk_size check for each new device.
* Stacking drivers are expected to know what they are doing.
*/
old_sector = -1;
old_dev = 0;
do {
char b[BDEVNAME_SIZE];
q = bdev_get_queue(bio->bi_bdev);
if (!q) {
printk(KERN_ERR
"generic_make_request: Trying to access "
"nonexistent block-device %s (%Lu)\n",
bdevname(bio->bi_bdev, b),
(long long) bio->bi_sector);
end_io:
bio_endio(bio, err);
break;
}
if (unlikely(nr_sectors > q->max_hw_sectors)) {
printk(KERN_ERR "bio too big device %s (%u > %u)\n",
bdevname(bio->bi_bdev, b),
bio_sectors(bio),
q->max_hw_sectors);
goto end_io;
}
if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
goto end_io;
if (should_fail_request(bio))
goto end_io;
/*
* If this device has partitions, remap block n
* of partition p to block n+start(p) of the disk.
*/
blk_partition_remap(bio);
if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
goto end_io;
if (old_sector != -1)
blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
old_sector);
blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
old_sector = bio->bi_sector;
old_dev = bio->bi_bdev->bd_dev;
if (bio_check_eod(bio, nr_sectors))
goto end_io;
if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
(bio_discard(bio) && !q->prepare_discard_fn)) {
err = -EOPNOTSUPP;
goto end_io;
}
ret = q->make_request_fn(q, bio);
} while (ret);
}
/*
* We only want one ->make_request_fn to be active at a time,
* else stack usage with stacked devices could be a problem.
* So use current->bio_{list,tail} to keep a list of requests
* submited by a make_request_fn function.
* current->bio_tail is also used as a flag to say if
* generic_make_request is currently active in this task or not.
* If it is NULL, then no make_request is active. If it is non-NULL,
* then a make_request is active, and new requests should be added
* at the tail
*/
void generic_make_request(struct bio *bio)
{
if (current->bio_tail) {
/* make_request is active */
*(current->bio_tail) = bio;
bio->bi_next = NULL;
current->bio_tail = &bio->bi_next;
return;
}
/* following loop may be a bit non-obvious, and so deserves some
* explanation.
* Before entering the loop, bio->bi_next is NULL (as all callers
* ensure that) so we have a list with a single bio.
* We pretend that we have just taken it off a longer list, so
* we assign bio_list to the next (which is NULL) and bio_tail
* to &bio_list, thus initialising the bio_list of new bios to be
* added. __generic_make_request may indeed add some more bios
* through a recursive call to generic_make_request. If it
* did, we find a non-NULL value in bio_list and re-enter the loop
* from the top. In this case we really did just take the bio
* of the top of the list (no pretending) and so fixup bio_list and
* bio_tail or bi_next, and call into __generic_make_request again.
*
* The loop was structured like this to make only one call to
* __generic_make_request (which is important as it is large and
* inlined) and to keep the structure simple.
*/
BUG_ON(bio->bi_next);
do {
current->bio_list = bio->bi_next;
if (bio->bi_next == NULL)
current->bio_tail = &current->bio_list;
else
bio->bi_next = NULL;
__generic_make_request(bio);
bio = current->bio_list;
} while (bio);
current->bio_tail = NULL; /* deactivate */
}
EXPORT_SYMBOL(generic_make_request);
/**
* submit_bio - submit a bio to the block device layer for I/O
* @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
* @bio: The &struct bio which describes the I/O
*
* submit_bio() is very similar in purpose to generic_make_request(), and
* uses that function to do most of the work. Both are fairly rough
* interfaces; @bio must be presetup and ready for I/O.
*
*/
void submit_bio(int rw, struct bio *bio)
{
int count = bio_sectors(bio);
bio->bi_rw |= rw;
/*
* If it's a regular read/write or a barrier with data attached,
* go through the normal accounting stuff before submission.
*/
if (bio_has_data(bio)) {
if (rw & WRITE) {
count_vm_events(PGPGOUT, count);
} else {
task_io_account_read(bio->bi_size);
count_vm_events(PGPGIN, count);
}
if (unlikely(block_dump)) {
char b[BDEVNAME_SIZE];
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
current->comm, task_pid_nr(current),
(rw & WRITE) ? "WRITE" : "READ",
(unsigned long long)bio->bi_sector,
bdevname(bio->bi_bdev, b));
}
}
generic_make_request(bio);
}
EXPORT_SYMBOL(submit_bio);
/**
* blk_rq_check_limits - Helper function to check a request for the queue limit
* @q: the queue
* @rq: the request being checked
*
* Description:
* @rq may have been made based on weaker limitations of upper-level queues
* in request stacking drivers, and it may violate the limitation of @q.
* Since the block layer and the underlying device driver trust @rq
* after it is inserted to @q, it should be checked against @q before
* the insertion using this generic function.
*
* This function should also be useful for request stacking drivers
* in some cases below, so export this fuction.
* Request stacking drivers like request-based dm may change the queue
* limits while requests are in the queue (e.g. dm's table swapping).
* Such request stacking drivers should check those requests agaist
* the new queue limits again when they dispatch those requests,
* although such checkings are also done against the old queue limits
* when submitting requests.
*/
int blk_rq_check_limits(struct request_queue *q, struct request *rq)
{
if (rq->nr_sectors > q->max_sectors ||
rq->data_len > q->max_hw_sectors << 9) {
printk(KERN_ERR "%s: over max size limit.\n", __func__);
return -EIO;
}
/*
* queue's settings related to segment counting like q->bounce_pfn
* may differ from that of other stacking queues.
* Recalculate it to check the request correctly on this queue's
* limitation.
*/
blk_recalc_rq_segments(rq);
if (rq->nr_phys_segments > q->max_phys_segments ||
rq->nr_phys_segments > q->max_hw_segments) {
printk(KERN_ERR "%s: over max segments limit.\n", __func__);
return -EIO;
}
return 0;
}
EXPORT_SYMBOL_GPL(blk_rq_check_limits);
/**
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
* @q: the queue to submit the request
* @rq: the request being queued
*/
int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
unsigned long flags;
if (blk_rq_check_limits(q, rq))
return -EIO;
#ifdef CONFIG_FAIL_MAKE_REQUEST
if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
should_fail(&fail_make_request, blk_rq_bytes(rq)))
return -EIO;
#endif
spin_lock_irqsave(q->queue_lock, flags);
/*
* Submitting request must be dequeued before calling this function
* because it will be linked to another request_queue
*/
BUG_ON(blk_queued_rq(rq));
drive_stat_acct(rq, 1);
__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
/**
* __end_that_request_first - end I/O on a request
* @req: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete
*
* Description:
* Ends I/O on a number of bytes attached to @req, and sets it up
* for the next range of segments (if any) in the cluster.
*
* Return:
* %0 - we are done with this request, call end_that_request_last()
* %1 - still buffers pending for this request
**/
static int __end_that_request_first(struct request *req, int error,
int nr_bytes)
{
int total_bytes, bio_nbytes, next_idx = 0;
struct bio *bio;
blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
/*
* for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
* sense key with us all the way through
*/
if (!blk_pc_request(req))
req->errors = 0;
if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
req->rq_disk ? req->rq_disk->disk_name : "?",
(unsigned long long)req->sector);
}
if (blk_fs_request(req) && req->rq_disk) {
const int rw = rq_data_dir(req);
struct hd_struct *part;
int cpu;
cpu = part_stat_lock();
part = disk_map_sector_rcu(req->rq_disk, req->sector);
part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
part_stat_unlock();
}
total_bytes = bio_nbytes = 0;
while ((bio = req->bio) != NULL) {
int nbytes;
/*
* For an empty barrier request, the low level driver must
* store a potential error location in ->sector. We pass
* that back up in ->bi_sector.
*/
if (blk_empty_barrier(req))
bio->bi_sector = req->sector;
if (nr_bytes >= bio->bi_size) {
req->bio = bio->bi_next;
nbytes = bio->bi_size;
req_bio_endio(req, bio, nbytes, error);
next_idx = 0;
bio_nbytes = 0;
} else {
int idx = bio->bi_idx + next_idx;
if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
blk_dump_rq_flags(req, "__end_that");
printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
__func__, bio->bi_idx, bio->bi_vcnt);
break;
}
nbytes = bio_iovec_idx(bio, idx)->bv_len;
BIO_BUG_ON(nbytes > bio->bi_size);
/*
* not a complete bvec done
*/
if (unlikely(nbytes > nr_bytes)) {
bio_nbytes += nr_bytes;
total_bytes += nr_bytes;
break;
}
/*
* advance to the next vector
*/
next_idx++;
bio_nbytes += nbytes;
}
total_bytes += nbytes;
nr_bytes -= nbytes;
bio = req->bio;
if (bio) {
/*
* end more in this run, or just return 'not-done'
*/
if (unlikely(nr_bytes <= 0))
break;
}
}
/*
* completely done
*/
if (!req->bio)
return 0;
/*
* if the request wasn't completed, update state
*/
if (bio_nbytes) {
req_bio_endio(req, bio, bio_nbytes, error);
bio->bi_idx += next_idx;
bio_iovec(bio)->bv_offset += nr_bytes;
bio_iovec(bio)->bv_len -= nr_bytes;
}
blk_recalc_rq_sectors(req, total_bytes >> 9);
blk_recalc_rq_segments(req);
return 1;
}
/*
* queue lock must be held
*/
static void end_that_request_last(struct request *req, int error)
{
struct gendisk *disk = req->rq_disk;
blk_delete_timer(req);
if (blk_rq_tagged(req))
blk_queue_end_tag(req->q, req);
if (blk_queued_rq(req))
blkdev_dequeue_request(req);
if (unlikely(laptop_mode) && blk_fs_request(req))
laptop_io_completion();
/*
* Account IO completion. bar_rq isn't accounted as a normal
* IO on queueing nor completion. Accounting the containing
* request is enough.
*/
if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
unsigned long duration = jiffies - req->start_time;
const int rw = rq_data_dir(req);
struct hd_struct *part;
int cpu;
cpu = part_stat_lock();
part = disk_map_sector_rcu(disk, req->sector);
part_stat_inc(cpu, part, ios[rw]);
part_stat_add(cpu, part, ticks[rw], duration);
part_round_stats(cpu, part);
part_dec_in_flight(part);
part_stat_unlock();
}
if (req->end_io)
req->end_io(req, error);
else {
if (blk_bidi_rq(req))
__blk_put_request(req->next_rq->q, req->next_rq);
__blk_put_request(req->q, req);
}
}
/**
* blk_rq_bytes - Returns bytes left to complete in the entire request
* @rq: the request being processed
**/
unsigned int blk_rq_bytes(struct request *rq)
{
if (blk_fs_request(rq))
return rq->hard_nr_sectors << 9;
return rq->data_len;
}
EXPORT_SYMBOL_GPL(blk_rq_bytes);
/**
* blk_rq_cur_bytes - Returns bytes left to complete in the current segment
* @rq: the request being processed
**/
unsigned int blk_rq_cur_bytes(struct request *rq)
{
if (blk_fs_request(rq))
return rq->current_nr_sectors << 9;
if (rq->bio)
return rq->bio->bi_size;
return rq->data_len;
}
EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
/**
* end_request - end I/O on the current segment of the request
* @req: the request being processed
* @uptodate: error value or %0/%1 uptodate flag
*
* Description:
* Ends I/O on the current segment of a request. If that is the only
* remaining segment, the request is also completed and freed.
*
* This is a remnant of how older block drivers handled I/O completions.
* Modern drivers typically end I/O on the full request in one go, unless
* they have a residual value to account for. For that case this function
* isn't really useful, unless the residual just happens to be the
* full current segment. In other words, don't use this function in new
* code. Use blk_end_request() or __blk_end_request() to end a request.
**/
void end_request(struct request *req, int uptodate)
{
int error = 0;
if (uptodate <= 0)
error = uptodate ? uptodate : -EIO;
__blk_end_request(req, error, req->hard_cur_sectors << 9);
}
EXPORT_SYMBOL(end_request);
static int end_that_request_data(struct request *rq, int error,
unsigned int nr_bytes, unsigned int bidi_bytes)
{
if (rq->bio) {
if (__end_that_request_first(rq, error, nr_bytes))
return 1;
/* Bidi request must be completed as a whole */
if (blk_bidi_rq(rq) &&
__end_that_request_first(rq->next_rq, error, bidi_bytes))
return 1;
}
return 0;
}
/**
* blk_end_io - Generic end_io function to complete a request.
* @rq: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete @rq
* @bidi_bytes: number of bytes to complete @rq->next_rq
* @drv_callback: function called between completion of bios in the request
* and completion of the request.
* If the callback returns non %0, this helper returns without
* completion of the request.
*
* Description:
* Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
* If @rq has leftover, sets it up for the next range of segments.
*
* Return:
* %0 - we are done with this request
* %1 - this request is not freed yet, it still has pending buffers.
**/
static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
unsigned int bidi_bytes,
int (drv_callback)(struct request *))
{
struct request_queue *q = rq->q;
unsigned long flags = 0UL;
if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
return 1;
/* Special feature for tricky drivers */
if (drv_callback && drv_callback(rq))
return 1;
add_disk_randomness(rq->rq_disk);
spin_lock_irqsave(q->queue_lock, flags);
end_that_request_last(rq, error);
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
}
/**
* blk_end_request - Helper function for drivers to complete the request.
* @rq: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete
*
* Description:
* Ends I/O on a number of bytes attached to @rq.
* If @rq has leftover, sets it up for the next range of segments.
*
* Return:
* %0 - we are done with this request
* %1 - still buffers pending for this request
**/
int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
{
return blk_end_io(rq, error, nr_bytes, 0, NULL);
}
EXPORT_SYMBOL_GPL(blk_end_request);
/**
* __blk_end_request - Helper function for drivers to complete the request.
* @rq: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete
*
* Description:
* Must be called with queue lock held unlike blk_end_request().
*
* Return:
* %0 - we are done with this request
* %1 - still buffers pending for this request
**/
int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
{
if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
return 1;
add_disk_randomness(rq->rq_disk);
end_that_request_last(rq, error);
return 0;
}
EXPORT_SYMBOL_GPL(__blk_end_request);
/**
* blk_end_bidi_request - Helper function for drivers to complete bidi request.
* @rq: the bidi request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete @rq
* @bidi_bytes: number of bytes to complete @rq->next_rq
*
* Description:
* Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
*
* Return:
* %0 - we are done with this request
* %1 - still buffers pending for this request
**/
int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
unsigned int bidi_bytes)
{
return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
}
EXPORT_SYMBOL_GPL(blk_end_bidi_request);
/**
* blk_update_request - Special helper function for request stacking drivers
* @rq: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete @rq
*
* Description:
* Ends I/O on a number of bytes attached to @rq, but doesn't complete
* the request structure even if @rq doesn't have leftover.
* If @rq has leftover, sets it up for the next range of segments.
*
* This special helper function is only for request stacking drivers
* (e.g. request-based dm) so that they can handle partial completion.
* Actual device drivers should use blk_end_request instead.
*/
void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
{
if (!end_that_request_data(rq, error, nr_bytes, 0)) {
/*
* These members are not updated in end_that_request_data()
* when all bios are completed.
* Update them so that the request stacking driver can find
* how many bytes remain in the request later.
*/
rq->nr_sectors = rq->hard_nr_sectors = 0;
rq->current_nr_sectors = rq->hard_cur_sectors = 0;
}
}
EXPORT_SYMBOL_GPL(blk_update_request);
/**
* blk_end_request_callback - Special helper function for tricky drivers
* @rq: the request being processed
* @error: %0 for success, < %0 for error
* @nr_bytes: number of bytes to complete
* @drv_callback: function called between completion of bios in the request
* and completion of the request.
* If the callback returns non %0, this helper returns without
* completion of the request.
*
* Description:
* Ends I/O on a number of bytes attached to @rq.
* If @rq has leftover, sets it up for the next range of segments.
*
* This special helper function is used only for existing tricky drivers.
* (e.g. cdrom_newpc_intr() of ide-cd)
* This interface will be removed when such drivers are rewritten.
* Don't use this interface in other places anymore.
*
* Return:
* %0 - we are done with this request
* %1 - this request is not freed yet.
* this request still has pending buffers or
* the driver doesn't want to finish this request yet.
**/
int blk_end_request_callback(struct request *rq, int error,
unsigned int nr_bytes,
int (drv_callback)(struct request *))
{
return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
}
EXPORT_SYMBOL_GPL(blk_end_request_callback);
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
struct bio *bio)
{
/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
rq->cmd_flags |= (bio->bi_rw & 3);
if (bio_has_data(bio)) {
rq->nr_phys_segments = bio_phys_segments(q, bio);
rq->buffer = bio_data(bio);
}
rq->current_nr_sectors = bio_cur_sectors(bio);
rq->hard_cur_sectors = rq->current_nr_sectors;
rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
rq->data_len = bio->bi_size;
rq->bio = rq->biotail = bio;
if (bio->bi_bdev)
rq->rq_disk = bio->bi_bdev->bd_disk;
}
/**
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
* @q : the queue of the device being checked
*
* Description:
* Check if underlying low-level drivers of a device are busy.
* If the drivers want to export their busy state, they must set own
* exporting function using blk_queue_lld_busy() first.
*
* Basically, this function is used only by request stacking drivers
* to stop dispatching requests to underlying devices when underlying
* devices are busy. This behavior helps more I/O merging on the queue
* of the request stacking driver and prevents I/O throughput regression
* on burst I/O load.
*
* Return:
* 0 - Not busy (The request stacking driver should dispatch request)
* 1 - Busy (The request stacking driver should stop dispatching request)
*/
int blk_lld_busy(struct request_queue *q)
{
if (q->lld_busy_fn)
return q->lld_busy_fn(q);
return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);
int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
{
return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);
void kblockd_flush_work(struct work_struct *work)
{
cancel_work_sync(work);
}
EXPORT_SYMBOL(kblockd_flush_work);
int __init blk_dev_init(void)
{
kblockd_workqueue = create_workqueue("kblockd");
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
request_cachep = kmem_cache_create("blkdev_requests",
sizeof(struct request), 0, SLAB_PANIC, NULL);
blk_requestq_cachep = kmem_cache_create("blkdev_queue",
sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
return 0;
}