linux-stable-rt/drivers/usb/input/hid-core.c

1882 lines
51 KiB
C

/*
* USB HID support for Linux
*
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2001 Vojtech Pavlik <vojtech@suse.cz>
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <linux/input.h>
#include <linux/wait.h>
#undef DEBUG
#undef DEBUG_DATA
#include <linux/usb.h>
#include "hid.h"
#include <linux/hiddev.h>
/*
* Version Information
*/
#define DRIVER_VERSION "v2.01"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
#define DRIVER_DESC "USB HID core driver"
#define DRIVER_LICENSE "GPL"
static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
"Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};
/*
* Module parameters.
*/
static unsigned int hid_mousepoll_interval;
module_param_named(mousepoll, hid_mousepoll_interval, uint, 0644);
MODULE_PARM_DESC(mousepoll, "Polling interval of mice");
/*
* Register a new report for a device.
*/
static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
struct hid_report_enum *report_enum = device->report_enum + type;
struct hid_report *report;
if (report_enum->report_id_hash[id])
return report_enum->report_id_hash[id];
if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
return NULL;
memset(report, 0, sizeof(struct hid_report));
if (id != 0)
report_enum->numbered = 1;
report->id = id;
report->type = type;
report->size = 0;
report->device = device;
report_enum->report_id_hash[id] = report;
list_add_tail(&report->list, &report_enum->report_list);
return report;
}
/*
* Register a new field for this report.
*/
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
struct hid_field *field;
if (report->maxfield == HID_MAX_FIELDS) {
dbg("too many fields in report");
return NULL;
}
if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned));
field->index = report->maxfield++;
report->field[field->index] = field;
field->usage = (struct hid_usage *)(field + 1);
field->value = (unsigned *)(field->usage + usages);
field->report = report;
return field;
}
/*
* Open a collection. The type/usage is pushed on the stack.
*/
static int open_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection;
unsigned usage;
usage = parser->local.usage[0];
if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
dbg("collection stack overflow");
return -1;
}
if (parser->device->maxcollection == parser->device->collection_size) {
collection = kmalloc(sizeof(struct hid_collection) *
parser->device->collection_size * 2, GFP_KERNEL);
if (collection == NULL) {
dbg("failed to reallocate collection array");
return -1;
}
memcpy(collection, parser->device->collection,
sizeof(struct hid_collection) *
parser->device->collection_size);
memset(collection + parser->device->collection_size, 0,
sizeof(struct hid_collection) *
parser->device->collection_size);
kfree(parser->device->collection);
parser->device->collection = collection;
parser->device->collection_size *= 2;
}
parser->collection_stack[parser->collection_stack_ptr++] =
parser->device->maxcollection;
collection = parser->device->collection +
parser->device->maxcollection++;
collection->type = type;
collection->usage = usage;
collection->level = parser->collection_stack_ptr - 1;
if (type == HID_COLLECTION_APPLICATION)
parser->device->maxapplication++;
return 0;
}
/*
* Close a collection.
*/
static int close_collection(struct hid_parser *parser)
{
if (!parser->collection_stack_ptr) {
dbg("collection stack underflow");
return -1;
}
parser->collection_stack_ptr--;
return 0;
}
/*
* Climb up the stack, search for the specified collection type
* and return the usage.
*/
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
int n;
for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
if (parser->device->collection[parser->collection_stack[n]].type == type)
return parser->device->collection[parser->collection_stack[n]].usage;
return 0; /* we know nothing about this usage type */
}
/*
* Add a usage to the temporary parser table.
*/
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
if (parser->local.usage_index >= HID_MAX_USAGES) {
dbg("usage index exceeded");
return -1;
}
parser->local.usage[parser->local.usage_index] = usage;
parser->local.collection_index[parser->local.usage_index] =
parser->collection_stack_ptr ?
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
parser->local.usage_index++;
return 0;
}
/*
* Register a new field for this report.
*/
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
struct hid_report *report;
struct hid_field *field;
int usages;
unsigned offset;
int i;
if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
dbg("hid_register_report failed");
return -1;
}
if (parser->global.logical_maximum < parser->global.logical_minimum) {
dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
return -1;
}
offset = report->size;
report->size += parser->global.report_size * parser->global.report_count;
if (!parser->local.usage_index) /* Ignore padding fields */
return 0;
usages = max_t(int, parser->local.usage_index, parser->global.report_count);
if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
return 0;
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
for (i = 0; i < usages; i++) {
int j = i;
/* Duplicate the last usage we parsed if we have excess values */
if (i >= parser->local.usage_index)
j = parser->local.usage_index - 1;
field->usage[i].hid = parser->local.usage[j];
field->usage[i].collection_index =
parser->local.collection_index[j];
}
field->maxusage = usages;
field->flags = flags;
field->report_offset = offset;
field->report_type = report_type;
field->report_size = parser->global.report_size;
field->report_count = parser->global.report_count;
field->logical_minimum = parser->global.logical_minimum;
field->logical_maximum = parser->global.logical_maximum;
field->physical_minimum = parser->global.physical_minimum;
field->physical_maximum = parser->global.physical_maximum;
field->unit_exponent = parser->global.unit_exponent;
field->unit = parser->global.unit;
return 0;
}
/*
* Read data value from item.
*/
static __inline__ __u32 item_udata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.u8;
case 2: return item->data.u16;
case 4: return item->data.u32;
}
return 0;
}
static __inline__ __s32 item_sdata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.s8;
case 2: return item->data.s16;
case 4: return item->data.s32;
}
return 0;
}
/*
* Process a global item.
*/
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
switch (item->tag) {
case HID_GLOBAL_ITEM_TAG_PUSH:
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
dbg("global enviroment stack overflow");
return -1;
}
memcpy(parser->global_stack + parser->global_stack_ptr++,
&parser->global, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_POP:
if (!parser->global_stack_ptr) {
dbg("global enviroment stack underflow");
return -1;
}
memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
parser->global.usage_page = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
parser->global.logical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
if (parser->global.logical_minimum < 0)
parser->global.logical_maximum = item_sdata(item);
else
parser->global.logical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
parser->global.physical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
if (parser->global.physical_minimum < 0)
parser->global.physical_maximum = item_sdata(item);
else
parser->global.physical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
parser->global.unit_exponent = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT:
parser->global.unit = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
if ((parser->global.report_size = item_udata(item)) > 32) {
dbg("invalid report_size %d", parser->global.report_size);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
dbg("invalid report_count %d", parser->global.report_count);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
if ((parser->global.report_id = item_udata(item)) == 0) {
dbg("report_id 0 is invalid");
return -1;
}
return 0;
default:
dbg("unknown global tag 0x%x", item->tag);
return -1;
}
}
/*
* Process a local item.
*/
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
unsigned n;
if (item->size == 0) {
dbg("item data expected for local item");
return -1;
}
data = item_udata(item);
switch (item->tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
if (data) {
/*
* We treat items before the first delimiter
* as global to all usage sets (branch 0).
* In the moment we process only these global
* items and the first delimiter set.
*/
if (parser->local.delimiter_depth != 0) {
dbg("nested delimiters");
return -1;
}
parser->local.delimiter_depth++;
parser->local.delimiter_branch++;
} else {
if (parser->local.delimiter_depth < 1) {
dbg("bogus close delimiter");
return -1;
}
parser->local.delimiter_depth--;
}
return 1;
case HID_LOCAL_ITEM_TAG_USAGE:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
return hid_add_usage(parser, data);
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
parser->local.usage_minimum = data;
return 0;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
for (n = parser->local.usage_minimum; n <= data; n++)
if (hid_add_usage(parser, n)) {
dbg("hid_add_usage failed\n");
return -1;
}
return 0;
default:
dbg("unknown local item tag 0x%x", item->tag);
return 0;
}
return 0;
}
/*
* Process a main item.
*/
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
int ret;
data = item_udata(item);
switch (item->tag) {
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
ret = open_collection(parser, data & 0xff);
break;
case HID_MAIN_ITEM_TAG_END_COLLECTION:
ret = close_collection(parser);
break;
case HID_MAIN_ITEM_TAG_INPUT:
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_OUTPUT:
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_FEATURE:
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
break;
default:
dbg("unknown main item tag 0x%x", item->tag);
ret = 0;
}
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
return ret;
}
/*
* Process a reserved item.
*/
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
dbg("reserved item type, tag 0x%x", item->tag);
return 0;
}
/*
* Free a report and all registered fields. The field->usage and
* field->value table's are allocated behind the field, so we need
* only to free(field) itself.
*/
static void hid_free_report(struct hid_report *report)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
kfree(report->field[n]);
kfree(report);
}
/*
* Free a device structure, all reports, and all fields.
*/
static void hid_free_device(struct hid_device *device)
{
unsigned i,j;
hid_ff_exit(device);
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = device->report_enum + i;
for (j = 0; j < 256; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report)
hid_free_report(report);
}
}
kfree(device->rdesc);
kfree(device);
}
/*
* Fetch a report description item from the data stream. We support long
* items, though they are not used yet.
*/
static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
u8 b;
if ((end - start) <= 0)
return NULL;
b = *start++;
item->type = (b >> 2) & 3;
item->tag = (b >> 4) & 15;
if (item->tag == HID_ITEM_TAG_LONG) {
item->format = HID_ITEM_FORMAT_LONG;
if ((end - start) < 2)
return NULL;
item->size = *start++;
item->tag = *start++;
if ((end - start) < item->size)
return NULL;
item->data.longdata = start;
start += item->size;
return start;
}
item->format = HID_ITEM_FORMAT_SHORT;
item->size = b & 3;
switch (item->size) {
case 0:
return start;
case 1:
if ((end - start) < 1)
return NULL;
item->data.u8 = *start++;
return start;
case 2:
if ((end - start) < 2)
return NULL;
item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
start = (__u8 *)((__le16 *)start + 1);
return start;
case 3:
item->size++;
if ((end - start) < 4)
return NULL;
item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
start = (__u8 *)((__le32 *)start + 1);
return start;
}
return NULL;
}
/*
* Parse a report description into a hid_device structure. Reports are
* enumerated, fields are attached to these reports.
*/
static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
struct hid_device *device;
struct hid_parser *parser;
struct hid_item item;
__u8 *end;
unsigned i;
static int (*dispatch_type[])(struct hid_parser *parser,
struct hid_item *item) = {
hid_parser_main,
hid_parser_global,
hid_parser_local,
hid_parser_reserved
};
if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
return NULL;
memset(device, 0, sizeof(struct hid_device));
if (!(device->collection = kmalloc(sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
kfree(device);
return NULL;
}
memset(device->collection, 0, sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS);
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
for (i = 0; i < HID_REPORT_TYPES; i++)
INIT_LIST_HEAD(&device->report_enum[i].report_list);
if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
kfree(device->collection);
kfree(device);
return NULL;
}
memcpy(device->rdesc, start, size);
device->rsize = size;
if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
kfree(device->rdesc);
kfree(device->collection);
kfree(device);
return NULL;
}
memset(parser, 0, sizeof(struct hid_parser));
parser->device = device;
end = start + size;
while ((start = fetch_item(start, end, &item)) != NULL) {
if (item.format != HID_ITEM_FORMAT_SHORT) {
dbg("unexpected long global item");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (dispatch_type[item.type](parser, &item)) {
dbg("item %u %u %u %u parsing failed\n",
item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (start == end) {
if (parser->collection_stack_ptr) {
dbg("unbalanced collection at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (parser->local.delimiter_depth) {
dbg("unbalanced delimiter at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
kfree(parser);
return device;
}
}
dbg("item fetching failed at offset %d\n", (int)(end - start));
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
/*
* Convert a signed n-bit integer to signed 32-bit integer. Common
* cases are done through the compiler, the screwed things has to be
* done by hand.
*/
static __inline__ __s32 snto32(__u32 value, unsigned n)
{
switch (n) {
case 8: return ((__s8)value);
case 16: return ((__s16)value);
case 32: return ((__s32)value);
}
return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
/*
* Convert a signed 32-bit integer to a signed n-bit integer.
*/
static __inline__ __u32 s32ton(__s32 value, unsigned n)
{
__s32 a = value >> (n - 1);
if (a && a != -1)
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
return value & ((1 << n) - 1);
}
/*
* Extract/implement a data field from/to a report.
*/
static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
report += (offset >> 5) << 2; offset &= 31;
return (le64_to_cpu(get_unaligned((__le64*)report)) >> offset) & ((1 << n) - 1);
}
static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
report += (offset >> 5) << 2; offset &= 31;
put_unaligned((get_unaligned((__le64*)report)
& cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))
| cpu_to_le64((__u64)value << offset), (__le64*)report);
}
/*
* Search an array for a value.
*/
static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
while (n--) {
if (*array++ == value)
return 0;
}
return -1;
}
static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, struct pt_regs *regs)
{
hid_dump_input(usage, value);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_hid_event(hid, field, usage, value, regs);
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_hid_event(hid, field, usage, value, regs);
}
/*
* Analyse a received field, and fetch the data from it. The field
* content is stored for next report processing (we do differential
* reporting to the layer).
*/
static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, struct pt_regs *regs)
{
unsigned n;
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
__s32 min = field->logical_minimum;
__s32 max = field->logical_maximum;
__s32 *value;
if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
return;
for (n = 0; n < count; n++) {
value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
extract(data, offset + n * size, size);
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
&& value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
goto exit;
}
for (n = 0; n < count; n++) {
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
hid_process_event(hid, field, &field->usage[n], value[n], regs);
continue;
}
if (field->value[n] >= min && field->value[n] <= max
&& field->usage[field->value[n] - min].hid
&& search(value, field->value[n], count))
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, regs);
if (value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid
&& search(field->value, value[n], count))
hid_process_event(hid, field, &field->usage[value[n] - min], 1, regs);
}
memcpy(field->value, value, count * sizeof(__s32));
exit:
kfree(value);
}
static int hid_input_report(int type, struct urb *urb, struct pt_regs *regs)
{
struct hid_device *hid = urb->context;
struct hid_report_enum *report_enum = hid->report_enum + type;
u8 *data = urb->transfer_buffer;
int len = urb->actual_length;
struct hid_report *report;
int n, size;
if (!len) {
dbg("empty report");
return -1;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif
n = 0; /* Normally report number is 0 */
if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
n = *data++;
len--;
}
#ifdef DEBUG_DATA
{
int i;
printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len);
for (i = 0; i < len; i++)
printk(" %02x", data[i]);
printk("\n");
}
#endif
if (!(report = report_enum->report_id_hash[n])) {
dbg("undefined report_id %d received", n);
return -1;
}
size = ((report->size - 1) >> 3) + 1;
if (len < size)
dbg("report %d is too short, (%d < %d)", report->id, len, size);
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_report_event(hid, report);
for (n = 0; n < report->maxfield; n++)
hid_input_field(hid, report->field[n], data, regs);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_report_event(hid, report);
return 0;
}
/*
* Input interrupt completion handler.
*/
static void hid_irq_in(struct urb *urb, struct pt_regs *regs)
{
struct hid_device *hid = urb->context;
int status;
switch (urb->status) {
case 0: /* success */
hid_input_report(HID_INPUT_REPORT, urb, regs);
break;
case -ECONNRESET: /* unlink */
case -ENOENT:
case -EPERM:
case -ESHUTDOWN: /* unplug */
case -EILSEQ: /* unplug timeout on uhci */
return;
case -ETIMEDOUT: /* NAK */
break;
default: /* error */
warn("input irq status %d received", urb->status);
}
status = usb_submit_urb(urb, SLAB_ATOMIC);
if (status)
err("can't resubmit intr, %s-%s/input%d, status %d",
hid->dev->bus->bus_name, hid->dev->devpath,
hid->ifnum, status);
}
/*
* Output the field into the report.
*/
static void hid_output_field(struct hid_field *field, __u8 *data)
{
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
unsigned n;
for (n = 0; n < count; n++) {
if (field->logical_minimum < 0) /* signed values */
implement(data, offset + n * size, size, s32ton(field->value[n], size));
else /* unsigned values */
implement(data, offset + n * size, size, field->value[n]);
}
}
/*
* Create a report.
*/
static void hid_output_report(struct hid_report *report, __u8 *data)
{
unsigned n;
if (report->id > 0)
*data++ = report->id;
for (n = 0; n < report->maxfield; n++)
hid_output_field(report->field[n], data);
}
/*
* Set a field value. The report this field belongs to has to be
* created and transferred to the device, to set this value in the
* device.
*/
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
unsigned size = field->report_size;
hid_dump_input(field->usage + offset, value);
if (offset >= field->report_count) {
dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
hid_dump_field(field, 8);
return -1;
}
if (field->logical_minimum < 0) {
if (value != snto32(s32ton(value, size), size)) {
dbg("value %d is out of range", value);
return -1;
}
}
field->value[offset] = value;
return 0;
}
/*
* Find a report field with a specified HID usage.
*/
struct hid_field *hid_find_field_by_usage(struct hid_device *hid, __u32 wanted_usage, int type)
{
struct hid_report *report;
int i;
list_for_each_entry(report, &hid->report_enum[type].report_list, list)
for (i = 0; i < report->maxfield; i++)
if (report->field[i]->logical == wanted_usage)
return report->field[i];
return NULL;
}
static int hid_submit_out(struct hid_device *hid)
{
struct hid_report *report;
report = hid->out[hid->outtail];
hid_output_report(report, hid->outbuf);
hid->urbout->transfer_buffer_length = ((report->size - 1) >> 3) + 1 + (report->id > 0);
hid->urbout->dev = hid->dev;
dbg("submitting out urb");
if (usb_submit_urb(hid->urbout, GFP_ATOMIC)) {
err("usb_submit_urb(out) failed");
return -1;
}
return 0;
}
static int hid_submit_ctrl(struct hid_device *hid)
{
struct hid_report *report;
unsigned char dir;
int len;
report = hid->ctrl[hid->ctrltail].report;
dir = hid->ctrl[hid->ctrltail].dir;
len = ((report->size - 1) >> 3) + 1 + (report->id > 0);
if (dir == USB_DIR_OUT) {
hid_output_report(report, hid->ctrlbuf);
hid->urbctrl->pipe = usb_sndctrlpipe(hid->dev, 0);
hid->urbctrl->transfer_buffer_length = len;
} else {
int maxpacket, padlen;
hid->urbctrl->pipe = usb_rcvctrlpipe(hid->dev, 0);
maxpacket = usb_maxpacket(hid->dev, hid->urbctrl->pipe, 0);
if (maxpacket > 0) {
padlen = (len + maxpacket - 1) / maxpacket;
padlen *= maxpacket;
if (padlen > HID_BUFFER_SIZE)
padlen = HID_BUFFER_SIZE;
} else
padlen = 0;
hid->urbctrl->transfer_buffer_length = padlen;
}
hid->urbctrl->dev = hid->dev;
hid->cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | dir;
hid->cr->bRequest = (dir == USB_DIR_OUT) ? HID_REQ_SET_REPORT : HID_REQ_GET_REPORT;
hid->cr->wValue = cpu_to_le16(((report->type + 1) << 8) | report->id);
hid->cr->wIndex = cpu_to_le16(hid->ifnum);
hid->cr->wLength = cpu_to_le16(len);
dbg("submitting ctrl urb: %s wValue=0x%04x wIndex=0x%04x wLength=%u",
hid->cr->bRequest == HID_REQ_SET_REPORT ? "Set_Report" : "Get_Report",
hid->cr->wValue, hid->cr->wIndex, hid->cr->wLength);
if (usb_submit_urb(hid->urbctrl, GFP_ATOMIC)) {
err("usb_submit_urb(ctrl) failed");
return -1;
}
return 0;
}
/*
* Output interrupt completion handler.
*/
static void hid_irq_out(struct urb *urb, struct pt_regs *regs)
{
struct hid_device *hid = urb->context;
unsigned long flags;
int unplug = 0;
switch (urb->status) {
case 0: /* success */
case -ESHUTDOWN: /* unplug */
case -EILSEQ: /* unplug timeout on uhci */
unplug = 1;
case -ECONNRESET: /* unlink */
case -ENOENT:
break;
default: /* error */
warn("output irq status %d received", urb->status);
}
spin_lock_irqsave(&hid->outlock, flags);
if (unplug)
hid->outtail = hid->outhead;
else
hid->outtail = (hid->outtail + 1) & (HID_OUTPUT_FIFO_SIZE - 1);
if (hid->outhead != hid->outtail) {
if (hid_submit_out(hid)) {
clear_bit(HID_OUT_RUNNING, &hid->iofl);;
wake_up(&hid->wait);
}
spin_unlock_irqrestore(&hid->outlock, flags);
return;
}
clear_bit(HID_OUT_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->outlock, flags);
wake_up(&hid->wait);
}
/*
* Control pipe completion handler.
*/
static void hid_ctrl(struct urb *urb, struct pt_regs *regs)
{
struct hid_device *hid = urb->context;
unsigned long flags;
int unplug = 0;
spin_lock_irqsave(&hid->ctrllock, flags);
switch (urb->status) {
case 0: /* success */
if (hid->ctrl[hid->ctrltail].dir == USB_DIR_IN)
hid_input_report(hid->ctrl[hid->ctrltail].report->type, urb, regs);
case -ESHUTDOWN: /* unplug */
case -EILSEQ: /* unplug timectrl on uhci */
unplug = 1;
case -ECONNRESET: /* unlink */
case -ENOENT:
case -EPIPE: /* report not available */
break;
default: /* error */
warn("ctrl urb status %d received", urb->status);
}
if (unplug)
hid->ctrltail = hid->ctrlhead;
else
hid->ctrltail = (hid->ctrltail + 1) & (HID_CONTROL_FIFO_SIZE - 1);
if (hid->ctrlhead != hid->ctrltail) {
if (hid_submit_ctrl(hid)) {
clear_bit(HID_CTRL_RUNNING, &hid->iofl);
wake_up(&hid->wait);
}
spin_unlock_irqrestore(&hid->ctrllock, flags);
return;
}
clear_bit(HID_CTRL_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->ctrllock, flags);
wake_up(&hid->wait);
}
void hid_submit_report(struct hid_device *hid, struct hid_report *report, unsigned char dir)
{
int head;
unsigned long flags;
if ((hid->quirks & HID_QUIRK_NOGET) && dir == USB_DIR_IN)
return;
if (hid->urbout && dir == USB_DIR_OUT && report->type == HID_OUTPUT_REPORT) {
spin_lock_irqsave(&hid->outlock, flags);
if ((head = (hid->outhead + 1) & (HID_OUTPUT_FIFO_SIZE - 1)) == hid->outtail) {
spin_unlock_irqrestore(&hid->outlock, flags);
warn("output queue full");
return;
}
hid->out[hid->outhead] = report;
hid->outhead = head;
if (!test_and_set_bit(HID_OUT_RUNNING, &hid->iofl))
if (hid_submit_out(hid))
clear_bit(HID_OUT_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->outlock, flags);
return;
}
spin_lock_irqsave(&hid->ctrllock, flags);
if ((head = (hid->ctrlhead + 1) & (HID_CONTROL_FIFO_SIZE - 1)) == hid->ctrltail) {
spin_unlock_irqrestore(&hid->ctrllock, flags);
warn("control queue full");
return;
}
hid->ctrl[hid->ctrlhead].report = report;
hid->ctrl[hid->ctrlhead].dir = dir;
hid->ctrlhead = head;
if (!test_and_set_bit(HID_CTRL_RUNNING, &hid->iofl))
if (hid_submit_ctrl(hid))
clear_bit(HID_CTRL_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->ctrllock, flags);
}
int hid_wait_io(struct hid_device *hid)
{
if (!wait_event_timeout(hid->wait, (!test_bit(HID_CTRL_RUNNING, &hid->iofl) &&
!test_bit(HID_OUT_RUNNING, &hid->iofl)),
10*HZ)) {
dbg("timeout waiting for ctrl or out queue to clear");
return -1;
}
return 0;
}
static int hid_get_class_descriptor(struct usb_device *dev, int ifnum,
unsigned char type, void *buf, int size)
{
int result, retries = 4;
memset(buf,0,size); // Make sure we parse really received data
do {
result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN,
(type << 8), ifnum, buf, size, USB_CTRL_GET_TIMEOUT);
retries--;
} while (result < size && retries);
return result;
}
int hid_open(struct hid_device *hid)
{
if (hid->open++)
return 0;
hid->urbin->dev = hid->dev;
if (usb_submit_urb(hid->urbin, GFP_KERNEL))
return -EIO;
return 0;
}
void hid_close(struct hid_device *hid)
{
if (!--hid->open)
usb_kill_urb(hid->urbin);
}
/*
* Initialize all reports
*/
void hid_init_reports(struct hid_device *hid)
{
struct hid_report *report;
int err, ret;
list_for_each_entry(report, &hid->report_enum[HID_INPUT_REPORT].report_list, list) {
int size = ((report->size - 1) >> 3) + 1 + hid->report_enum[HID_INPUT_REPORT].numbered;
if (size > HID_BUFFER_SIZE) size = HID_BUFFER_SIZE;
if (size > hid->urbin->transfer_buffer_length)
hid->urbin->transfer_buffer_length = size;
hid_submit_report(hid, report, USB_DIR_IN);
}
list_for_each_entry(report, &hid->report_enum[HID_FEATURE_REPORT].report_list, list)
hid_submit_report(hid, report, USB_DIR_IN);
err = 0;
ret = hid_wait_io(hid);
while (ret) {
err |= ret;
if (test_bit(HID_CTRL_RUNNING, &hid->iofl))
usb_kill_urb(hid->urbctrl);
if (test_bit(HID_OUT_RUNNING, &hid->iofl))
usb_kill_urb(hid->urbout);
ret = hid_wait_io(hid);
}
if (err)
warn("timeout initializing reports\n");
usb_control_msg(hid->dev, usb_sndctrlpipe(hid->dev, 0),
HID_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
hid->ifnum, NULL, 0, USB_CTRL_SET_TIMEOUT);
}
#define USB_VENDOR_ID_WACOM 0x056a
#define USB_DEVICE_ID_WACOM_PENPARTNER 0x0000
#define USB_DEVICE_ID_WACOM_GRAPHIRE 0x0010
#define USB_DEVICE_ID_WACOM_INTUOS 0x0020
#define USB_DEVICE_ID_WACOM_PL 0x0030
#define USB_DEVICE_ID_WACOM_INTUOS2 0x0040
#define USB_DEVICE_ID_WACOM_VOLITO 0x0060
#define USB_DEVICE_ID_WACOM_PTU 0x0003
#define USB_DEVICE_ID_WACOM_INTUOS3 0x00B0
#define USB_DEVICE_ID_WACOM_CINTIQ 0x003F
#define USB_VENDOR_ID_KBGEAR 0x084e
#define USB_DEVICE_ID_KBGEAR_JAMSTUDIO 0x1001
#define USB_VENDOR_ID_AIPTEK 0x08ca
#define USB_DEVICE_ID_AIPTEK_01 0x0001
#define USB_DEVICE_ID_AIPTEK_10 0x0010
#define USB_DEVICE_ID_AIPTEK_20 0x0020
#define USB_DEVICE_ID_AIPTEK_21 0x0021
#define USB_DEVICE_ID_AIPTEK_22 0x0022
#define USB_DEVICE_ID_AIPTEK_23 0x0023
#define USB_DEVICE_ID_AIPTEK_24 0x0024
#define USB_VENDOR_ID_GRIFFIN 0x077d
#define USB_DEVICE_ID_POWERMATE 0x0410
#define USB_DEVICE_ID_SOUNDKNOB 0x04AA
#define USB_VENDOR_ID_ATEN 0x0557
#define USB_DEVICE_ID_ATEN_UC100KM 0x2004
#define USB_DEVICE_ID_ATEN_CS124U 0x2202
#define USB_DEVICE_ID_ATEN_2PORTKVM 0x2204
#define USB_DEVICE_ID_ATEN_4PORTKVM 0x2205
#define USB_DEVICE_ID_ATEN_4PORTKVMC 0x2208
#define USB_VENDOR_ID_TOPMAX 0x0663
#define USB_DEVICE_ID_TOPMAX_COBRAPAD 0x0103
#define USB_VENDOR_ID_HAPP 0x078b
#define USB_DEVICE_ID_UGCI_DRIVING 0x0010
#define USB_DEVICE_ID_UGCI_FLYING 0x0020
#define USB_DEVICE_ID_UGCI_FIGHTING 0x0030
#define USB_VENDOR_ID_MGE 0x0463
#define USB_DEVICE_ID_MGE_UPS 0xffff
#define USB_DEVICE_ID_MGE_UPS1 0x0001
#define USB_VENDOR_ID_ONTRAK 0x0a07
#define USB_DEVICE_ID_ONTRAK_ADU100 0x0064
#define USB_VENDOR_ID_TANGTOP 0x0d3d
#define USB_DEVICE_ID_TANGTOP_USBPS2 0x0001
#define USB_VENDOR_ID_ESSENTIAL_REALITY 0x0d7f
#define USB_DEVICE_ID_ESSENTIAL_REALITY_P5 0x0100
#define USB_VENDOR_ID_A4TECH 0x09da
#define USB_DEVICE_ID_A4TECH_WCP32PU 0x0006
#define USB_VENDOR_ID_CYPRESS 0x04b4
#define USB_DEVICE_ID_CYPRESS_MOUSE 0x0001
#define USB_DEVICE_ID_CYPRESS_HIDCOM 0x5500
#define USB_VENDOR_ID_BERKSHIRE 0x0c98
#define USB_DEVICE_ID_BERKSHIRE_PCWD 0x1140
#define USB_VENDOR_ID_ALPS 0x0433
#define USB_DEVICE_ID_IBM_GAMEPAD 0x1101
#define USB_VENDOR_ID_SAITEK 0x06a3
#define USB_DEVICE_ID_SAITEK_RUMBLEPAD 0xff17
#define USB_VENDOR_ID_NEC 0x073e
#define USB_DEVICE_ID_NEC_USB_GAME_PAD 0x0301
#define USB_VENDOR_ID_CHIC 0x05fe
#define USB_DEVICE_ID_CHIC_GAMEPAD 0x0014
#define USB_VENDOR_ID_GLAB 0x06c2
#define USB_DEVICE_ID_4_PHIDGETSERVO_30 0x0038
#define USB_DEVICE_ID_1_PHIDGETSERVO_30 0x0039
#define USB_DEVICE_ID_8_8_8_IF_KIT 0x0045
#define USB_DEVICE_ID_0_0_4_IF_KIT 0x0040
#define USB_DEVICE_ID_0_8_8_IF_KIT 0x0053
#define USB_VENDOR_ID_WISEGROUP 0x0925
#define USB_DEVICE_ID_1_PHIDGETSERVO_20 0x8101
#define USB_DEVICE_ID_4_PHIDGETSERVO_20 0x8104
#define USB_VENDOR_ID_CODEMERCS 0x07c0
#define USB_DEVICE_ID_CODEMERCS_IOW40 0x1500
#define USB_DEVICE_ID_CODEMERCS_IOW24 0x1501
#define USB_DEVICE_ID_CODEMERCS_IOW48 0x1502
#define USB_DEVICE_ID_CODEMERCS_IOW28 0x1503
#define USB_VENDOR_ID_DELORME 0x1163
#define USB_DEVICE_ID_DELORME_EARTHMATE 0x0100
#define USB_DEVICE_ID_DELORME_EM_LT20 0x0200
#define USB_VENDOR_ID_MCC 0x09db
#define USB_DEVICE_ID_MCC_PMD1024LS 0x0076
#define USB_DEVICE_ID_MCC_PMD1208LS 0x007a
#define USB_VENDOR_ID_CHICONY 0x04f2
#define USB_DEVICE_ID_CHICONY_USBHUB_KB 0x0100
#define USB_VENDOR_ID_BTC 0x046e
#define USB_DEVICE_ID_BTC_KEYBOARD 0x5303
#define USB_VENDOR_ID_VERNIER 0x08f7
#define USB_DEVICE_ID_VERNIER_LABPRO 0x0001
#define USB_DEVICE_ID_VERNIER_GOTEMP 0x0002
#define USB_DEVICE_ID_VERNIER_SKIP 0x0003
#define USB_DEVICE_ID_VERNIER_CYCLOPS 0x0004
/*
* Alphabetically sorted blacklist by quirk type.
*/
static struct hid_blacklist {
__u16 idVendor;
__u16 idProduct;
unsigned quirks;
} hid_blacklist[] = {
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW40, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW24, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW48, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW28, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 5, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 7, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_VOLITO, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PTU, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3 + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3 + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_CINTIQ, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVMC, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_KEYBOARD, HID_QUIRK_NOGET},
{ USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_USBHUB_KB, HID_QUIRK_NOGET},
{ USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU, HID_QUIRK_2WHEEL_MOUSE_HACK_7 },
{ USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE, HID_QUIRK_2WHEEL_MOUSE_HACK_5 },
{ USB_VENDOR_ID_ALPS, USB_DEVICE_ID_IBM_GAMEPAD, HID_QUIRK_BADPAD },
{ USB_VENDOR_ID_CHIC, USB_DEVICE_ID_CHIC_GAMEPAD, HID_QUIRK_BADPAD },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_NEC, USB_DEVICE_ID_NEC_USB_GAME_PAD, HID_QUIRK_BADPAD },
{ USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RUMBLEPAD, HID_QUIRK_BADPAD },
{ USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD },
{ 0, 0 }
};
static int hid_alloc_buffers(struct usb_device *dev, struct hid_device *hid)
{
if (!(hid->inbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->inbuf_dma)))
return -1;
if (!(hid->outbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->outbuf_dma)))
return -1;
if (!(hid->cr = usb_buffer_alloc(dev, sizeof(*(hid->cr)), SLAB_ATOMIC, &hid->cr_dma)))
return -1;
if (!(hid->ctrlbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->ctrlbuf_dma)))
return -1;
return 0;
}
static void hid_free_buffers(struct usb_device *dev, struct hid_device *hid)
{
if (hid->inbuf)
usb_buffer_free(dev, HID_BUFFER_SIZE, hid->inbuf, hid->inbuf_dma);
if (hid->outbuf)
usb_buffer_free(dev, HID_BUFFER_SIZE, hid->outbuf, hid->outbuf_dma);
if (hid->cr)
usb_buffer_free(dev, sizeof(*(hid->cr)), hid->cr, hid->cr_dma);
if (hid->ctrlbuf)
usb_buffer_free(dev, HID_BUFFER_SIZE, hid->ctrlbuf, hid->ctrlbuf_dma);
}
static struct hid_device *usb_hid_configure(struct usb_interface *intf)
{
struct usb_host_interface *interface = intf->cur_altsetting;
struct usb_device *dev = interface_to_usbdev (intf);
struct hid_descriptor *hdesc;
struct hid_device *hid;
unsigned quirks = 0, rsize = 0;
char *buf, *rdesc;
int n;
for (n = 0; hid_blacklist[n].idVendor; n++)
if ((hid_blacklist[n].idVendor == le16_to_cpu(dev->descriptor.idVendor)) &&
(hid_blacklist[n].idProduct == le16_to_cpu(dev->descriptor.idProduct)))
quirks = hid_blacklist[n].quirks;
if (quirks & HID_QUIRK_IGNORE)
return NULL;
if (usb_get_extra_descriptor(interface, HID_DT_HID, &hdesc) && ((!interface->desc.bNumEndpoints) ||
usb_get_extra_descriptor(&interface->endpoint[0], HID_DT_HID, &hdesc))) {
dbg("class descriptor not present\n");
return NULL;
}
for (n = 0; n < hdesc->bNumDescriptors; n++)
if (hdesc->desc[n].bDescriptorType == HID_DT_REPORT)
rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);
if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {
dbg("weird size of report descriptor (%u)", rsize);
return NULL;
}
if (!(rdesc = kmalloc(rsize, GFP_KERNEL))) {
dbg("couldn't allocate rdesc memory");
return NULL;
}
if ((n = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize)) < 0) {
dbg("reading report descriptor failed");
kfree(rdesc);
return NULL;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n);
for (n = 0; n < rsize; n++)
printk(" %02x", (unsigned char) rdesc[n]);
printk("\n");
#endif
if (!(hid = hid_parse_report(rdesc, n))) {
dbg("parsing report descriptor failed");
kfree(rdesc);
return NULL;
}
kfree(rdesc);
hid->quirks = quirks;
if (hid_alloc_buffers(dev, hid)) {
hid_free_buffers(dev, hid);
goto fail;
}
for (n = 0; n < interface->desc.bNumEndpoints; n++) {
struct usb_endpoint_descriptor *endpoint;
int pipe;
int interval;
endpoint = &interface->endpoint[n].desc;
if ((endpoint->bmAttributes & 3) != 3) /* Not an interrupt endpoint */
continue;
/* handle potential highspeed HID correctly */
interval = endpoint->bInterval;
if (dev->speed == USB_SPEED_HIGH)
interval = 1 << (interval - 1);
/* Change the polling interval of mice. */
if (hid->collection->usage == HID_GD_MOUSE && hid_mousepoll_interval > 0)
interval = hid_mousepoll_interval;
if (endpoint->bEndpointAddress & USB_DIR_IN) {
if (hid->urbin)
continue;
if (!(hid->urbin = usb_alloc_urb(0, GFP_KERNEL)))
goto fail;
pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
usb_fill_int_urb(hid->urbin, dev, pipe, hid->inbuf, 0,
hid_irq_in, hid, interval);
hid->urbin->transfer_dma = hid->inbuf_dma;
hid->urbin->transfer_flags |=(URB_NO_TRANSFER_DMA_MAP | URB_ASYNC_UNLINK);
} else {
if (hid->urbout)
continue;
if (!(hid->urbout = usb_alloc_urb(0, GFP_KERNEL)))
goto fail;
pipe = usb_sndintpipe(dev, endpoint->bEndpointAddress);
usb_fill_int_urb(hid->urbout, dev, pipe, hid->outbuf, 0,
hid_irq_out, hid, interval);
hid->urbout->transfer_dma = hid->outbuf_dma;
hid->urbout->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP | URB_ASYNC_UNLINK);
}
}
if (!hid->urbin) {
err("couldn't find an input interrupt endpoint");
goto fail;
}
init_waitqueue_head(&hid->wait);
spin_lock_init(&hid->outlock);
spin_lock_init(&hid->ctrllock);
hid->version = le16_to_cpu(hdesc->bcdHID);
hid->country = hdesc->bCountryCode;
hid->dev = dev;
hid->intf = intf;
hid->ifnum = interface->desc.bInterfaceNumber;
hid->name[0] = 0;
if (!(buf = kmalloc(64, GFP_KERNEL)))
goto fail;
if (dev->manufacturer) {
strcat(hid->name, dev->manufacturer);
if (dev->product)
snprintf(hid->name, 64, "%s %s", hid->name, dev->product);
} else if (dev->product) {
snprintf(hid->name, 128, "%s", dev->product);
} else
snprintf(hid->name, 128, "%04x:%04x",
le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
usb_make_path(dev, buf, 64);
snprintf(hid->phys, 64, "%s/input%d", buf,
intf->altsetting[0].desc.bInterfaceNumber);
if (usb_string(dev, dev->descriptor.iSerialNumber, hid->uniq, 64) <= 0)
hid->uniq[0] = 0;
kfree(buf);
hid->urbctrl = usb_alloc_urb(0, GFP_KERNEL);
if (!hid->urbctrl)
goto fail;
usb_fill_control_urb(hid->urbctrl, dev, 0, (void *) hid->cr,
hid->ctrlbuf, 1, hid_ctrl, hid);
hid->urbctrl->setup_dma = hid->cr_dma;
hid->urbctrl->transfer_dma = hid->ctrlbuf_dma;
hid->urbctrl->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP | URB_ASYNC_UNLINK);
return hid;
fail:
if (hid->urbin)
usb_free_urb(hid->urbin);
if (hid->urbout)
usb_free_urb(hid->urbout);
if (hid->urbctrl)
usb_free_urb(hid->urbctrl);
hid_free_buffers(dev, hid);
hid_free_device(hid);
return NULL;
}
static void hid_disconnect(struct usb_interface *intf)
{
struct hid_device *hid = usb_get_intfdata (intf);
if (!hid)
return;
usb_set_intfdata(intf, NULL);
usb_kill_urb(hid->urbin);
usb_kill_urb(hid->urbout);
usb_kill_urb(hid->urbctrl);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_disconnect(hid);
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_disconnect(hid);
usb_free_urb(hid->urbin);
usb_free_urb(hid->urbctrl);
if (hid->urbout)
usb_free_urb(hid->urbout);
hid_free_buffers(hid->dev, hid);
hid_free_device(hid);
}
static int hid_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct hid_device *hid;
char path[64];
int i;
char *c;
dbg("HID probe called for ifnum %d",
intf->altsetting->desc.bInterfaceNumber);
if (!(hid = usb_hid_configure(intf)))
return -ENODEV;
hid_init_reports(hid);
hid_dump_device(hid);
if (!hidinput_connect(hid))
hid->claimed |= HID_CLAIMED_INPUT;
if (!hiddev_connect(hid))
hid->claimed |= HID_CLAIMED_HIDDEV;
usb_set_intfdata(intf, hid);
if (!hid->claimed) {
printk ("HID device not claimed by input or hiddev\n");
hid_disconnect(intf);
return -ENODEV;
}
printk(KERN_INFO);
if (hid->claimed & HID_CLAIMED_INPUT)
printk("input");
if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV))
printk(",");
if (hid->claimed & HID_CLAIMED_HIDDEV)
printk("hiddev%d", hid->minor);
c = "Device";
for (i = 0; i < hid->maxcollection; i++) {
if (hid->collection[i].type == HID_COLLECTION_APPLICATION &&
(hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
(hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) {
c = hid_types[hid->collection[i].usage & 0xffff];
break;
}
}
usb_make_path(interface_to_usbdev(intf), path, 63);
printk(": USB HID v%x.%02x %s [%s] on %s\n",
hid->version >> 8, hid->version & 0xff, c, hid->name, path);
return 0;
}
static int hid_suspend(struct usb_interface *intf, pm_message_t message)
{
struct hid_device *hid = usb_get_intfdata (intf);
usb_kill_urb(hid->urbin);
intf->dev.power.power_state = PMSG_SUSPEND;
dev_dbg(&intf->dev, "suspend\n");
return 0;
}
static int hid_resume(struct usb_interface *intf)
{
struct hid_device *hid = usb_get_intfdata (intf);
int status;
intf->dev.power.power_state = PMSG_ON;
if (hid->open)
status = usb_submit_urb(hid->urbin, GFP_NOIO);
else
status = 0;
dev_dbg(&intf->dev, "resume status %d\n", status);
return status;
}
static struct usb_device_id hid_usb_ids [] = {
{ .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
.bInterfaceClass = USB_INTERFACE_CLASS_HID },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, hid_usb_ids);
static struct usb_driver hid_driver = {
.owner = THIS_MODULE,
.name = "usbhid",
.probe = hid_probe,
.disconnect = hid_disconnect,
.suspend = hid_suspend,
.resume = hid_resume,
.id_table = hid_usb_ids,
};
static int __init hid_init(void)
{
int retval;
retval = hiddev_init();
if (retval)
goto hiddev_init_fail;
retval = usb_register(&hid_driver);
if (retval)
goto usb_register_fail;
info(DRIVER_VERSION ":" DRIVER_DESC);
return 0;
usb_register_fail:
hiddev_exit();
hiddev_init_fail:
return retval;
}
static void __exit hid_exit(void)
{
usb_deregister(&hid_driver);
hiddev_exit();
}
module_init(hid_init);
module_exit(hid_exit);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE(DRIVER_LICENSE);