213 lines
5.3 KiB
C
213 lines
5.3 KiB
C
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/timex.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mc146818-time.h>
|
|
#include <asm/msc01_ic.h>
|
|
|
|
#include <asm/mips-boards/generic.h>
|
|
#include <asm/mips-boards/prom.h>
|
|
#include <asm/mips-boards/simint.h>
|
|
#include <asm/mc146818-time.h>
|
|
#include <asm/smp.h>
|
|
|
|
|
|
unsigned long cpu_khz;
|
|
|
|
irqreturn_t sim_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int cpu = smp_processor_id();
|
|
|
|
/*
|
|
* CPU 0 handles the global timer interrupt job
|
|
* resets count/compare registers to trigger next timer int.
|
|
*/
|
|
#ifndef CONFIG_MIPS_MT_SMTC
|
|
if (cpu == 0) {
|
|
timer_interrupt(irq, dev_id, regs);
|
|
}
|
|
else {
|
|
/* Everyone else needs to reset the timer int here as
|
|
ll_local_timer_interrupt doesn't */
|
|
/*
|
|
* FIXME: need to cope with counter underflow.
|
|
* More support needs to be added to kernel/time for
|
|
* counter/timer interrupts on multiple CPU's
|
|
*/
|
|
write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ));
|
|
}
|
|
#else /* SMTC */
|
|
/*
|
|
* In SMTC system, one Count/Compare set exists per VPE.
|
|
* Which TC within a VPE gets the interrupt is essentially
|
|
* random - we only know that it shouldn't be one with
|
|
* IXMT set. Whichever TC gets the interrupt needs to
|
|
* send special interprocessor interrupts to the other
|
|
* TCs to make sure that they schedule, etc.
|
|
*
|
|
* That code is specific to the SMTC kernel, not to
|
|
* the simulation platform, so it's invoked from
|
|
* the general MIPS timer_interrupt routine.
|
|
*
|
|
* We have a problem in that the interrupt vector code
|
|
* had to turn off the timer IM bit to avoid redundant
|
|
* entries, but we may never get to mips_cpu_irq_end
|
|
* to turn it back on again if the scheduler gets
|
|
* involved. So we clear the pending timer here,
|
|
* and re-enable the mask...
|
|
*/
|
|
|
|
int vpflags = dvpe();
|
|
write_c0_compare (read_c0_count() - 1);
|
|
clear_c0_cause(0x100 << MIPSCPU_INT_CPUCTR);
|
|
set_c0_status(0x100 << MIPSCPU_INT_CPUCTR);
|
|
irq_enable_hazard();
|
|
evpe(vpflags);
|
|
|
|
if(cpu_data[cpu].vpe_id == 0) timer_interrupt(irq, dev_id, regs);
|
|
else write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ));
|
|
smtc_timer_broadcast(cpu_data[cpu].vpe_id);
|
|
|
|
#endif /* CONFIG_MIPS_MT_SMTC */
|
|
|
|
/*
|
|
* every CPU should do profiling and process accounting
|
|
*/
|
|
local_timer_interrupt (irq, dev_id, regs);
|
|
return IRQ_HANDLED;
|
|
#else
|
|
return timer_interrupt (irq, dev_id, regs);
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Estimate CPU frequency. Sets mips_counter_frequency as a side-effect
|
|
*/
|
|
static unsigned int __init estimate_cpu_frequency(void)
|
|
{
|
|
unsigned int prid = read_c0_prid() & 0xffff00;
|
|
unsigned int count;
|
|
|
|
#if 1
|
|
/*
|
|
* hardwire the board frequency to 12MHz.
|
|
*/
|
|
|
|
if ((prid == (PRID_COMP_MIPS | PRID_IMP_20KC)) ||
|
|
(prid == (PRID_COMP_MIPS | PRID_IMP_25KF)))
|
|
count = 12000000;
|
|
else
|
|
count = 6000000;
|
|
#else
|
|
unsigned int flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Start counter exactly on falling edge of update flag */
|
|
while (CMOS_READ(RTC_REG_A) & RTC_UIP);
|
|
while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
|
|
|
|
/* Start r4k counter. */
|
|
write_c0_count(0);
|
|
|
|
/* Read counter exactly on falling edge of update flag */
|
|
while (CMOS_READ(RTC_REG_A) & RTC_UIP);
|
|
while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
|
|
|
|
count = read_c0_count();
|
|
|
|
/* restore interrupts */
|
|
local_irq_restore(flags);
|
|
#endif
|
|
|
|
mips_hpt_frequency = count;
|
|
|
|
if ((prid != (PRID_COMP_MIPS | PRID_IMP_20KC)) &&
|
|
(prid != (PRID_COMP_MIPS | PRID_IMP_25KF)))
|
|
count *= 2;
|
|
|
|
count += 5000; /* round */
|
|
count -= count%10000;
|
|
|
|
return count;
|
|
}
|
|
|
|
void __init sim_time_init(void)
|
|
{
|
|
unsigned int est_freq, flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
/* Set Data mode - binary. */
|
|
CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL);
|
|
|
|
|
|
est_freq = estimate_cpu_frequency ();
|
|
|
|
printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
|
|
(est_freq%1000000)*100/1000000);
|
|
|
|
cpu_khz = est_freq / 1000;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int mips_cpu_timer_irq;
|
|
|
|
static void mips_timer_dispatch (struct pt_regs *regs)
|
|
{
|
|
do_IRQ (mips_cpu_timer_irq, regs);
|
|
}
|
|
|
|
|
|
void __init plat_timer_setup(struct irqaction *irq)
|
|
{
|
|
if (cpu_has_veic) {
|
|
set_vi_handler(MSC01E_INT_CPUCTR, mips_timer_dispatch);
|
|
mips_cpu_timer_irq = MSC01E_INT_BASE + MSC01E_INT_CPUCTR;
|
|
}
|
|
else {
|
|
if (cpu_has_vint)
|
|
set_vi_handler(MIPSCPU_INT_CPUCTR, mips_timer_dispatch);
|
|
mips_cpu_timer_irq = MIPSCPU_INT_BASE + MIPSCPU_INT_CPUCTR;
|
|
}
|
|
|
|
/* we are using the cpu counter for timer interrupts */
|
|
irq->handler = sim_timer_interrupt;
|
|
setup_irq(mips_cpu_timer_irq, irq);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* irq_desc(riptor) is a global resource, when the interrupt overlaps
|
|
on seperate cpu's the first one tries to handle the second interrupt.
|
|
The effect is that the int remains disabled on the second cpu.
|
|
Mark the interrupt with IRQ_PER_CPU to avoid any confusion */
|
|
irq_desc[mips_cpu_timer_irq].status |= IRQ_PER_CPU;
|
|
#endif
|
|
|
|
/* to generate the first timer interrupt */
|
|
write_c0_compare(read_c0_count() + (mips_hpt_frequency/HZ));
|
|
}
|