921 lines
23 KiB
C
921 lines
23 KiB
C
/*
|
|
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_itable.h"
|
|
#include "xfs_rw.h"
|
|
#include "xfs_acl.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_utils.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_vnodeops.h"
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/writeback.h>
|
|
|
|
|
|
#if defined(XFS_RW_TRACE)
|
|
void
|
|
xfs_rw_enter_trace(
|
|
int tag,
|
|
xfs_inode_t *ip,
|
|
void *data,
|
|
size_t segs,
|
|
loff_t offset,
|
|
int ioflags)
|
|
{
|
|
if (ip->i_rwtrace == NULL)
|
|
return;
|
|
ktrace_enter(ip->i_rwtrace,
|
|
(void *)(unsigned long)tag,
|
|
(void *)ip,
|
|
(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
|
|
(void *)data,
|
|
(void *)((unsigned long)segs),
|
|
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(offset & 0xffffffff)),
|
|
(void *)((unsigned long)ioflags),
|
|
(void *)((unsigned long)((ip->i_new_size >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(ip->i_new_size & 0xffffffff)),
|
|
(void *)((unsigned long)current_pid()),
|
|
(void *)NULL,
|
|
(void *)NULL,
|
|
(void *)NULL,
|
|
(void *)NULL);
|
|
}
|
|
|
|
void
|
|
xfs_inval_cached_trace(
|
|
xfs_inode_t *ip,
|
|
xfs_off_t offset,
|
|
xfs_off_t len,
|
|
xfs_off_t first,
|
|
xfs_off_t last)
|
|
{
|
|
|
|
if (ip->i_rwtrace == NULL)
|
|
return;
|
|
ktrace_enter(ip->i_rwtrace,
|
|
(void *)(__psint_t)XFS_INVAL_CACHED,
|
|
(void *)ip,
|
|
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(offset & 0xffffffff)),
|
|
(void *)((unsigned long)((len >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(len & 0xffffffff)),
|
|
(void *)((unsigned long)((first >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(first & 0xffffffff)),
|
|
(void *)((unsigned long)((last >> 32) & 0xffffffff)),
|
|
(void *)((unsigned long)(last & 0xffffffff)),
|
|
(void *)((unsigned long)current_pid()),
|
|
(void *)NULL,
|
|
(void *)NULL,
|
|
(void *)NULL,
|
|
(void *)NULL,
|
|
(void *)NULL);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* xfs_iozero
|
|
*
|
|
* xfs_iozero clears the specified range of buffer supplied,
|
|
* and marks all the affected blocks as valid and modified. If
|
|
* an affected block is not allocated, it will be allocated. If
|
|
* an affected block is not completely overwritten, and is not
|
|
* valid before the operation, it will be read from disk before
|
|
* being partially zeroed.
|
|
*/
|
|
STATIC int
|
|
xfs_iozero(
|
|
struct xfs_inode *ip, /* inode */
|
|
loff_t pos, /* offset in file */
|
|
size_t count) /* size of data to zero */
|
|
{
|
|
struct page *page;
|
|
struct address_space *mapping;
|
|
int status;
|
|
|
|
mapping = VFS_I(ip)->i_mapping;
|
|
do {
|
|
unsigned offset, bytes;
|
|
void *fsdata;
|
|
|
|
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
|
|
bytes = PAGE_CACHE_SIZE - offset;
|
|
if (bytes > count)
|
|
bytes = count;
|
|
|
|
status = pagecache_write_begin(NULL, mapping, pos, bytes,
|
|
AOP_FLAG_UNINTERRUPTIBLE,
|
|
&page, &fsdata);
|
|
if (status)
|
|
break;
|
|
|
|
zero_user(page, offset, bytes);
|
|
|
|
status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
|
|
page, fsdata);
|
|
WARN_ON(status <= 0); /* can't return less than zero! */
|
|
pos += bytes;
|
|
count -= bytes;
|
|
status = 0;
|
|
} while (count);
|
|
|
|
return (-status);
|
|
}
|
|
|
|
ssize_t /* bytes read, or (-) error */
|
|
xfs_read(
|
|
xfs_inode_t *ip,
|
|
struct kiocb *iocb,
|
|
const struct iovec *iovp,
|
|
unsigned int segs,
|
|
loff_t *offset,
|
|
int ioflags)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
size_t size = 0;
|
|
ssize_t ret = 0;
|
|
xfs_fsize_t n;
|
|
unsigned long seg;
|
|
|
|
|
|
XFS_STATS_INC(xs_read_calls);
|
|
|
|
/* START copy & waste from filemap.c */
|
|
for (seg = 0; seg < segs; seg++) {
|
|
const struct iovec *iv = &iovp[seg];
|
|
|
|
/*
|
|
* If any segment has a negative length, or the cumulative
|
|
* length ever wraps negative then return -EINVAL.
|
|
*/
|
|
size += iv->iov_len;
|
|
if (unlikely((ssize_t)(size|iv->iov_len) < 0))
|
|
return XFS_ERROR(-EINVAL);
|
|
}
|
|
/* END copy & waste from filemap.c */
|
|
|
|
if (unlikely(ioflags & IO_ISDIRECT)) {
|
|
xfs_buftarg_t *target =
|
|
XFS_IS_REALTIME_INODE(ip) ?
|
|
mp->m_rtdev_targp : mp->m_ddev_targp;
|
|
if ((*offset & target->bt_smask) ||
|
|
(size & target->bt_smask)) {
|
|
if (*offset == ip->i_size) {
|
|
return (0);
|
|
}
|
|
return -XFS_ERROR(EINVAL);
|
|
}
|
|
}
|
|
|
|
n = XFS_MAXIOFFSET(mp) - *offset;
|
|
if ((n <= 0) || (size == 0))
|
|
return 0;
|
|
|
|
if (n < size)
|
|
size = n;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
if (unlikely(ioflags & IO_ISDIRECT))
|
|
mutex_lock(&inode->i_mutex);
|
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
|
|
|
if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
|
|
int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
|
|
int iolock = XFS_IOLOCK_SHARED;
|
|
|
|
ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *offset, size,
|
|
dmflags, &iolock);
|
|
if (ret) {
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
if (unlikely(ioflags & IO_ISDIRECT))
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (unlikely(ioflags & IO_ISDIRECT)) {
|
|
if (inode->i_mapping->nrpages)
|
|
ret = -xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK),
|
|
-1, FI_REMAPF_LOCKED);
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (ret) {
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
xfs_rw_enter_trace(XFS_READ_ENTER, ip,
|
|
(void *)iovp, segs, *offset, ioflags);
|
|
|
|
iocb->ki_pos = *offset;
|
|
ret = generic_file_aio_read(iocb, iovp, segs, *offset);
|
|
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
|
|
ret = wait_on_sync_kiocb(iocb);
|
|
if (ret > 0)
|
|
XFS_STATS_ADD(xs_read_bytes, ret);
|
|
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t
|
|
xfs_splice_read(
|
|
xfs_inode_t *ip,
|
|
struct file *infilp,
|
|
loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t count,
|
|
int flags,
|
|
int ioflags)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
ssize_t ret;
|
|
|
|
XFS_STATS_INC(xs_read_calls);
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
return -EIO;
|
|
|
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
|
|
|
if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
|
|
int iolock = XFS_IOLOCK_SHARED;
|
|
int error;
|
|
|
|
error = XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *ppos, count,
|
|
FILP_DELAY_FLAG(infilp), &iolock);
|
|
if (error) {
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return -error;
|
|
}
|
|
}
|
|
xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, ip,
|
|
pipe, count, *ppos, ioflags);
|
|
ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
|
|
if (ret > 0)
|
|
XFS_STATS_ADD(xs_read_bytes, ret);
|
|
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t
|
|
xfs_splice_write(
|
|
xfs_inode_t *ip,
|
|
struct pipe_inode_info *pipe,
|
|
struct file *outfilp,
|
|
loff_t *ppos,
|
|
size_t count,
|
|
int flags,
|
|
int ioflags)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
ssize_t ret;
|
|
struct inode *inode = outfilp->f_mapping->host;
|
|
xfs_fsize_t isize, new_size;
|
|
|
|
XFS_STATS_INC(xs_write_calls);
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
return -EIO;
|
|
|
|
xfs_ilock(ip, XFS_IOLOCK_EXCL);
|
|
|
|
if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
|
|
int iolock = XFS_IOLOCK_EXCL;
|
|
int error;
|
|
|
|
error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count,
|
|
FILP_DELAY_FLAG(outfilp), &iolock);
|
|
if (error) {
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
return -error;
|
|
}
|
|
}
|
|
|
|
new_size = *ppos + count;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
if (new_size > ip->i_size)
|
|
ip->i_new_size = new_size;
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, ip,
|
|
pipe, count, *ppos, ioflags);
|
|
ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
|
|
if (ret > 0)
|
|
XFS_STATS_ADD(xs_write_bytes, ret);
|
|
|
|
isize = i_size_read(inode);
|
|
if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
|
|
*ppos = isize;
|
|
|
|
if (*ppos > ip->i_size) {
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
if (*ppos > ip->i_size)
|
|
ip->i_size = *ppos;
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
if (ip->i_new_size) {
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
ip->i_new_size = 0;
|
|
if (ip->i_d.di_size > ip->i_size)
|
|
ip->i_d.di_size = ip->i_size;
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to handle zeroing any space in the last
|
|
* block of the file that is beyond the EOF. We do this since the
|
|
* size is being increased without writing anything to that block
|
|
* and we don't want anyone to read the garbage on the disk.
|
|
*/
|
|
STATIC int /* error (positive) */
|
|
xfs_zero_last_block(
|
|
xfs_inode_t *ip,
|
|
xfs_fsize_t offset,
|
|
xfs_fsize_t isize)
|
|
{
|
|
xfs_fileoff_t last_fsb;
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
int nimaps;
|
|
int zero_offset;
|
|
int zero_len;
|
|
int error = 0;
|
|
xfs_bmbt_irec_t imap;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
|
|
zero_offset = XFS_B_FSB_OFFSET(mp, isize);
|
|
if (zero_offset == 0) {
|
|
/*
|
|
* There are no extra bytes in the last block on disk to
|
|
* zero, so return.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
last_fsb = XFS_B_TO_FSBT(mp, isize);
|
|
nimaps = 1;
|
|
error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
|
|
&nimaps, NULL, NULL);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
ASSERT(nimaps > 0);
|
|
/*
|
|
* If the block underlying isize is just a hole, then there
|
|
* is nothing to zero.
|
|
*/
|
|
if (imap.br_startblock == HOLESTARTBLOCK) {
|
|
return 0;
|
|
}
|
|
/*
|
|
* Zero the part of the last block beyond the EOF, and write it
|
|
* out sync. We need to drop the ilock while we do this so we
|
|
* don't deadlock when the buffer cache calls back to us.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
zero_len = mp->m_sb.sb_blocksize - zero_offset;
|
|
if (isize + zero_len > offset)
|
|
zero_len = offset - isize;
|
|
error = xfs_iozero(ip, isize, zero_len);
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(error >= 0);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Zero any on disk space between the current EOF and the new,
|
|
* larger EOF. This handles the normal case of zeroing the remainder
|
|
* of the last block in the file and the unusual case of zeroing blocks
|
|
* out beyond the size of the file. This second case only happens
|
|
* with fixed size extents and when the system crashes before the inode
|
|
* size was updated but after blocks were allocated. If fill is set,
|
|
* then any holes in the range are filled and zeroed. If not, the holes
|
|
* are left alone as holes.
|
|
*/
|
|
|
|
int /* error (positive) */
|
|
xfs_zero_eof(
|
|
xfs_inode_t *ip,
|
|
xfs_off_t offset, /* starting I/O offset */
|
|
xfs_fsize_t isize) /* current inode size */
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
xfs_fileoff_t start_zero_fsb;
|
|
xfs_fileoff_t end_zero_fsb;
|
|
xfs_fileoff_t zero_count_fsb;
|
|
xfs_fileoff_t last_fsb;
|
|
xfs_fileoff_t zero_off;
|
|
xfs_fsize_t zero_len;
|
|
int nimaps;
|
|
int error = 0;
|
|
xfs_bmbt_irec_t imap;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
|
|
ASSERT(offset > isize);
|
|
|
|
/*
|
|
* First handle zeroing the block on which isize resides.
|
|
* We only zero a part of that block so it is handled specially.
|
|
*/
|
|
error = xfs_zero_last_block(ip, offset, isize);
|
|
if (error) {
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Calculate the range between the new size and the old
|
|
* where blocks needing to be zeroed may exist. To get the
|
|
* block where the last byte in the file currently resides,
|
|
* we need to subtract one from the size and truncate back
|
|
* to a block boundary. We subtract 1 in case the size is
|
|
* exactly on a block boundary.
|
|
*/
|
|
last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
|
|
start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
|
|
end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
|
|
ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
|
|
if (last_fsb == end_zero_fsb) {
|
|
/*
|
|
* The size was only incremented on its last block.
|
|
* We took care of that above, so just return.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
ASSERT(start_zero_fsb <= end_zero_fsb);
|
|
while (start_zero_fsb <= end_zero_fsb) {
|
|
nimaps = 1;
|
|
zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
|
|
error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
|
|
0, NULL, 0, &imap, &nimaps, NULL, NULL);
|
|
if (error) {
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
|
|
return error;
|
|
}
|
|
ASSERT(nimaps > 0);
|
|
|
|
if (imap.br_state == XFS_EXT_UNWRITTEN ||
|
|
imap.br_startblock == HOLESTARTBLOCK) {
|
|
/*
|
|
* This loop handles initializing pages that were
|
|
* partially initialized by the code below this
|
|
* loop. It basically zeroes the part of the page
|
|
* that sits on a hole and sets the page as P_HOLE
|
|
* and calls remapf if it is a mapped file.
|
|
*/
|
|
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
|
|
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* There are blocks we need to zero.
|
|
* Drop the inode lock while we're doing the I/O.
|
|
* We'll still have the iolock to protect us.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
|
|
zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
|
|
|
|
if ((zero_off + zero_len) > offset)
|
|
zero_len = offset - zero_off;
|
|
|
|
error = xfs_iozero(ip, zero_off, zero_len);
|
|
if (error) {
|
|
goto out_lock;
|
|
}
|
|
|
|
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
|
|
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_lock:
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(error >= 0);
|
|
return error;
|
|
}
|
|
|
|
ssize_t /* bytes written, or (-) error */
|
|
xfs_write(
|
|
struct xfs_inode *xip,
|
|
struct kiocb *iocb,
|
|
const struct iovec *iovp,
|
|
unsigned int nsegs,
|
|
loff_t *offset,
|
|
int ioflags)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
unsigned long segs = nsegs;
|
|
xfs_mount_t *mp;
|
|
ssize_t ret = 0, error = 0;
|
|
xfs_fsize_t isize, new_size;
|
|
int iolock;
|
|
int eventsent = 0;
|
|
size_t ocount = 0, count;
|
|
loff_t pos;
|
|
int need_i_mutex;
|
|
|
|
XFS_STATS_INC(xs_write_calls);
|
|
|
|
error = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ);
|
|
if (error)
|
|
return error;
|
|
|
|
count = ocount;
|
|
pos = *offset;
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
mp = xip->i_mount;
|
|
|
|
xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
relock:
|
|
if (ioflags & IO_ISDIRECT) {
|
|
iolock = XFS_IOLOCK_SHARED;
|
|
need_i_mutex = 0;
|
|
} else {
|
|
iolock = XFS_IOLOCK_EXCL;
|
|
need_i_mutex = 1;
|
|
mutex_lock(&inode->i_mutex);
|
|
}
|
|
|
|
xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
|
|
|
|
start:
|
|
error = -generic_write_checks(file, &pos, &count,
|
|
S_ISBLK(inode->i_mode));
|
|
if (error) {
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
|
|
goto out_unlock_mutex;
|
|
}
|
|
|
|
if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) &&
|
|
!(ioflags & IO_INVIS) && !eventsent)) {
|
|
int dmflags = FILP_DELAY_FLAG(file);
|
|
|
|
if (need_i_mutex)
|
|
dmflags |= DM_FLAGS_IMUX;
|
|
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL);
|
|
error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, xip,
|
|
pos, count, dmflags, &iolock);
|
|
if (error) {
|
|
goto out_unlock_internal;
|
|
}
|
|
xfs_ilock(xip, XFS_ILOCK_EXCL);
|
|
eventsent = 1;
|
|
|
|
/*
|
|
* The iolock was dropped and reacquired in XFS_SEND_DATA
|
|
* so we have to recheck the size when appending.
|
|
* We will only "goto start;" once, since having sent the
|
|
* event prevents another call to XFS_SEND_DATA, which is
|
|
* what allows the size to change in the first place.
|
|
*/
|
|
if ((file->f_flags & O_APPEND) && pos != xip->i_size)
|
|
goto start;
|
|
}
|
|
|
|
if (ioflags & IO_ISDIRECT) {
|
|
xfs_buftarg_t *target =
|
|
XFS_IS_REALTIME_INODE(xip) ?
|
|
mp->m_rtdev_targp : mp->m_ddev_targp;
|
|
|
|
if ((pos & target->bt_smask) || (count & target->bt_smask)) {
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
|
|
return XFS_ERROR(-EINVAL);
|
|
}
|
|
|
|
if (!need_i_mutex && (mapping->nrpages || pos > xip->i_size)) {
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
|
|
iolock = XFS_IOLOCK_EXCL;
|
|
need_i_mutex = 1;
|
|
mutex_lock(&inode->i_mutex);
|
|
xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
|
|
goto start;
|
|
}
|
|
}
|
|
|
|
new_size = pos + count;
|
|
if (new_size > xip->i_size)
|
|
xip->i_new_size = new_size;
|
|
|
|
if (likely(!(ioflags & IO_INVIS)))
|
|
xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
/*
|
|
* If the offset is beyond the size of the file, we have a couple
|
|
* of things to do. First, if there is already space allocated
|
|
* we need to either create holes or zero the disk or ...
|
|
*
|
|
* If there is a page where the previous size lands, we need
|
|
* to zero it out up to the new size.
|
|
*/
|
|
|
|
if (pos > xip->i_size) {
|
|
error = xfs_zero_eof(xip, pos, xip->i_size);
|
|
if (error) {
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL);
|
|
goto out_unlock_internal;
|
|
}
|
|
}
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* If we're writing the file then make sure to clear the
|
|
* setuid and setgid bits if the process is not being run
|
|
* by root. This keeps people from modifying setuid and
|
|
* setgid binaries.
|
|
*/
|
|
|
|
if (((xip->i_d.di_mode & S_ISUID) ||
|
|
((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
|
|
(S_ISGID | S_IXGRP))) &&
|
|
!capable(CAP_FSETID)) {
|
|
error = xfs_write_clear_setuid(xip);
|
|
if (likely(!error))
|
|
error = -file_remove_suid(file);
|
|
if (unlikely(error)) {
|
|
goto out_unlock_internal;
|
|
}
|
|
}
|
|
|
|
/* We can write back this queue in page reclaim */
|
|
current->backing_dev_info = mapping->backing_dev_info;
|
|
|
|
if ((ioflags & IO_ISDIRECT)) {
|
|
if (mapping->nrpages) {
|
|
WARN_ON(need_i_mutex == 0);
|
|
xfs_inval_cached_trace(xip, pos, -1,
|
|
(pos & PAGE_CACHE_MASK), -1);
|
|
error = xfs_flushinval_pages(xip,
|
|
(pos & PAGE_CACHE_MASK),
|
|
-1, FI_REMAPF_LOCKED);
|
|
if (error)
|
|
goto out_unlock_internal;
|
|
}
|
|
|
|
if (need_i_mutex) {
|
|
/* demote the lock now the cached pages are gone */
|
|
xfs_ilock_demote(xip, XFS_IOLOCK_EXCL);
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
iolock = XFS_IOLOCK_SHARED;
|
|
need_i_mutex = 0;
|
|
}
|
|
|
|
xfs_rw_enter_trace(XFS_DIOWR_ENTER, xip, (void *)iovp, segs,
|
|
*offset, ioflags);
|
|
ret = generic_file_direct_write(iocb, iovp,
|
|
&segs, pos, offset, count, ocount);
|
|
|
|
/*
|
|
* direct-io write to a hole: fall through to buffered I/O
|
|
* for completing the rest of the request.
|
|
*/
|
|
if (ret >= 0 && ret != count) {
|
|
XFS_STATS_ADD(xs_write_bytes, ret);
|
|
|
|
pos += ret;
|
|
count -= ret;
|
|
|
|
ioflags &= ~IO_ISDIRECT;
|
|
xfs_iunlock(xip, iolock);
|
|
goto relock;
|
|
}
|
|
} else {
|
|
int enospc = 0;
|
|
ssize_t ret2 = 0;
|
|
|
|
write_retry:
|
|
xfs_rw_enter_trace(XFS_WRITE_ENTER, xip, (void *)iovp, segs,
|
|
*offset, ioflags);
|
|
ret2 = generic_file_buffered_write(iocb, iovp, segs,
|
|
pos, offset, count, ret);
|
|
/*
|
|
* if we just got an ENOSPC, flush the inode now we
|
|
* aren't holding any page locks and retry *once*
|
|
*/
|
|
if (ret2 == -ENOSPC && !enospc) {
|
|
error = xfs_flush_pages(xip, 0, -1, 0, FI_NONE);
|
|
if (error)
|
|
goto out_unlock_internal;
|
|
enospc = 1;
|
|
goto write_retry;
|
|
}
|
|
ret = ret2;
|
|
}
|
|
|
|
current->backing_dev_info = NULL;
|
|
|
|
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
|
|
ret = wait_on_sync_kiocb(iocb);
|
|
|
|
isize = i_size_read(inode);
|
|
if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
|
|
*offset = isize;
|
|
|
|
if (*offset > xip->i_size) {
|
|
xfs_ilock(xip, XFS_ILOCK_EXCL);
|
|
if (*offset > xip->i_size)
|
|
xip->i_size = *offset;
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
if (ret == -ENOSPC &&
|
|
DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
|
|
xfs_iunlock(xip, iolock);
|
|
if (need_i_mutex)
|
|
mutex_unlock(&inode->i_mutex);
|
|
error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, xip,
|
|
DM_RIGHT_NULL, xip, DM_RIGHT_NULL, NULL, NULL,
|
|
0, 0, 0); /* Delay flag intentionally unused */
|
|
if (need_i_mutex)
|
|
mutex_lock(&inode->i_mutex);
|
|
xfs_ilock(xip, iolock);
|
|
if (error)
|
|
goto out_unlock_internal;
|
|
goto start;
|
|
}
|
|
|
|
error = -ret;
|
|
if (ret <= 0)
|
|
goto out_unlock_internal;
|
|
|
|
XFS_STATS_ADD(xs_write_bytes, ret);
|
|
|
|
/* Handle various SYNC-type writes */
|
|
if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
|
|
int error2;
|
|
|
|
xfs_iunlock(xip, iolock);
|
|
if (need_i_mutex)
|
|
mutex_unlock(&inode->i_mutex);
|
|
error2 = sync_page_range(inode, mapping, pos, ret);
|
|
if (!error)
|
|
error = error2;
|
|
if (need_i_mutex)
|
|
mutex_lock(&inode->i_mutex);
|
|
xfs_ilock(xip, iolock);
|
|
error2 = xfs_write_sync_logforce(mp, xip);
|
|
if (!error)
|
|
error = error2;
|
|
}
|
|
|
|
out_unlock_internal:
|
|
if (xip->i_new_size) {
|
|
xfs_ilock(xip, XFS_ILOCK_EXCL);
|
|
xip->i_new_size = 0;
|
|
/*
|
|
* If this was a direct or synchronous I/O that failed (such
|
|
* as ENOSPC) then part of the I/O may have been written to
|
|
* disk before the error occured. In this case the on-disk
|
|
* file size may have been adjusted beyond the in-memory file
|
|
* size and now needs to be truncated back.
|
|
*/
|
|
if (xip->i_d.di_size > xip->i_size)
|
|
xip->i_d.di_size = xip->i_size;
|
|
xfs_iunlock(xip, XFS_ILOCK_EXCL);
|
|
}
|
|
xfs_iunlock(xip, iolock);
|
|
out_unlock_mutex:
|
|
if (need_i_mutex)
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -error;
|
|
}
|
|
|
|
/*
|
|
* All xfs metadata buffers except log state machine buffers
|
|
* get this attached as their b_bdstrat callback function.
|
|
* This is so that we can catch a buffer
|
|
* after prematurely unpinning it to forcibly shutdown the filesystem.
|
|
*/
|
|
int
|
|
xfs_bdstrat_cb(struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
|
|
xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
|
|
/*
|
|
* Metadata write that didn't get logged but
|
|
* written delayed anyway. These aren't associated
|
|
* with a transaction, and can be ignored.
|
|
*/
|
|
if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
|
|
(XFS_BUF_ISREAD(bp)) == 0)
|
|
return (xfs_bioerror_relse(bp));
|
|
else
|
|
return (xfs_bioerror(bp));
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper around bdstrat so that we can stop data from going to disk in case
|
|
* we are shutting down the filesystem. Typically user data goes thru this
|
|
* path; one of the exceptions is the superblock.
|
|
*/
|
|
void
|
|
xfsbdstrat(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
ASSERT(mp);
|
|
if (!XFS_FORCED_SHUTDOWN(mp)) {
|
|
xfs_buf_iorequest(bp);
|
|
return;
|
|
}
|
|
|
|
xfs_buftrace("XFSBDSTRAT IOERROR", bp);
|
|
xfs_bioerror_relse(bp);
|
|
}
|
|
|
|
/*
|
|
* If the underlying (data/log/rt) device is readonly, there are some
|
|
* operations that cannot proceed.
|
|
*/
|
|
int
|
|
xfs_dev_is_read_only(
|
|
xfs_mount_t *mp,
|
|
char *message)
|
|
{
|
|
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
|
|
xfs_readonly_buftarg(mp->m_logdev_targp) ||
|
|
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
|
|
cmn_err(CE_NOTE,
|
|
"XFS: %s required on read-only device.", message);
|
|
cmn_err(CE_NOTE,
|
|
"XFS: write access unavailable, cannot proceed.");
|
|
return EROFS;
|
|
}
|
|
return 0;
|
|
}
|