linux-stable-rt/arch/sparc64/kernel/pci_iommu.c

871 lines
22 KiB
C

/* $Id: pci_iommu.c,v 1.17 2001/12/17 07:05:09 davem Exp $
* pci_iommu.c: UltraSparc PCI controller IOM/STC support.
*
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <asm/pbm.h>
#include "iommu_common.h"
#define PCI_STC_CTXMATCH_ADDR(STC, CTX) \
((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
/* Accessing IOMMU and Streaming Buffer registers.
* REG parameter is a physical address. All registers
* are 64-bits in size.
*/
#define pci_iommu_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define pci_iommu_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E))
/* Must be invoked under the IOMMU lock. */
static void __iommu_flushall(struct pci_iommu *iommu)
{
unsigned long tag;
int entry;
tag = iommu->iommu_flush + (0xa580UL - 0x0210UL);
for (entry = 0; entry < 16; entry++) {
pci_iommu_write(tag, 0);
tag += 8;
}
/* Ensure completion of previous PIO writes. */
(void) pci_iommu_read(iommu->write_complete_reg);
/* Now update everyone's flush point. */
for (entry = 0; entry < PBM_NCLUSTERS; entry++) {
iommu->alloc_info[entry].flush =
iommu->alloc_info[entry].next;
}
}
#define IOPTE_CONSISTENT(CTX) \
(IOPTE_VALID | IOPTE_CACHE | \
(((CTX) << 47) & IOPTE_CONTEXT))
#define IOPTE_STREAMING(CTX) \
(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
/* Existing mappings are never marked invalid, instead they
* are pointed to a dummy page.
*/
#define IOPTE_IS_DUMMY(iommu, iopte) \
((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
static void inline iopte_make_dummy(struct pci_iommu *iommu, iopte_t *iopte)
{
unsigned long val = iopte_val(*iopte);
val &= ~IOPTE_PAGE;
val |= iommu->dummy_page_pa;
iopte_val(*iopte) = val;
}
void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize)
{
int i;
tsbsize /= sizeof(iopte_t);
for (i = 0; i < tsbsize; i++)
iopte_make_dummy(iommu, &iommu->page_table[i]);
}
static iopte_t *alloc_streaming_cluster(struct pci_iommu *iommu, unsigned long npages)
{
iopte_t *iopte, *limit, *first;
unsigned long cnum, ent, flush_point;
cnum = 0;
while ((1UL << cnum) < npages)
cnum++;
iopte = (iommu->page_table +
(cnum << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
if (cnum == 0)
limit = (iommu->page_table +
iommu->lowest_consistent_map);
else
limit = (iopte +
(1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
iopte += ((ent = iommu->alloc_info[cnum].next) << cnum);
flush_point = iommu->alloc_info[cnum].flush;
first = iopte;
for (;;) {
if (IOPTE_IS_DUMMY(iommu, iopte)) {
if ((iopte + (1 << cnum)) >= limit)
ent = 0;
else
ent = ent + 1;
iommu->alloc_info[cnum].next = ent;
if (ent == flush_point)
__iommu_flushall(iommu);
break;
}
iopte += (1 << cnum);
ent++;
if (iopte >= limit) {
iopte = (iommu->page_table +
(cnum <<
(iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
ent = 0;
}
if (ent == flush_point)
__iommu_flushall(iommu);
if (iopte == first)
goto bad;
}
/* I've got your streaming cluster right here buddy boy... */
return iopte;
bad:
printk(KERN_EMERG "pci_iommu: alloc_streaming_cluster of npages(%ld) failed!\n",
npages);
return NULL;
}
static void free_streaming_cluster(struct pci_iommu *iommu, dma_addr_t base,
unsigned long npages, unsigned long ctx)
{
unsigned long cnum, ent;
cnum = 0;
while ((1UL << cnum) < npages)
cnum++;
ent = (base << (32 - IO_PAGE_SHIFT + PBM_LOGCLUSTERS - iommu->page_table_sz_bits))
>> (32 + PBM_LOGCLUSTERS + cnum - iommu->page_table_sz_bits);
/* If the global flush might not have caught this entry,
* adjust the flush point such that we will flush before
* ever trying to reuse it.
*/
#define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y)))
if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush))
iommu->alloc_info[cnum].flush = ent;
#undef between
}
/* We allocate consistent mappings from the end of cluster zero. */
static iopte_t *alloc_consistent_cluster(struct pci_iommu *iommu, unsigned long npages)
{
iopte_t *iopte;
iopte = iommu->page_table + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS));
while (iopte > iommu->page_table) {
iopte--;
if (IOPTE_IS_DUMMY(iommu, iopte)) {
unsigned long tmp = npages;
while (--tmp) {
iopte--;
if (!IOPTE_IS_DUMMY(iommu, iopte))
break;
}
if (tmp == 0) {
u32 entry = (iopte - iommu->page_table);
if (entry < iommu->lowest_consistent_map)
iommu->lowest_consistent_map = entry;
return iopte;
}
}
}
return NULL;
}
static int iommu_alloc_ctx(struct pci_iommu *iommu)
{
int lowest = iommu->ctx_lowest_free;
int sz = IOMMU_NUM_CTXS - lowest;
int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
if (unlikely(n == sz)) {
n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
if (unlikely(n == lowest)) {
printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
n = 0;
}
}
if (n)
__set_bit(n, iommu->ctx_bitmap);
return n;
}
static inline void iommu_free_ctx(struct pci_iommu *iommu, int ctx)
{
if (likely(ctx)) {
__clear_bit(ctx, iommu->ctx_bitmap);
if (ctx < iommu->ctx_lowest_free)
iommu->ctx_lowest_free = ctx;
}
}
/* Allocate and map kernel buffer of size SIZE using consistent mode
* DMA for PCI device PDEV. Return non-NULL cpu-side address if
* successful and set *DMA_ADDRP to the PCI side dma address.
*/
void *pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
iopte_t *iopte;
unsigned long flags, order, first_page, ctx;
void *ret;
int npages;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= 10)
return NULL;
first_page = __get_free_pages(GFP_ATOMIC, order);
if (first_page == 0UL)
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT);
if (iopte == NULL) {
spin_unlock_irqrestore(&iommu->lock, flags);
free_pages(first_page, order);
return NULL;
}
*dma_addrp = (iommu->page_table_map_base +
((iopte - iommu->page_table) << IO_PAGE_SHIFT));
ret = (void *) first_page;
npages = size >> IO_PAGE_SHIFT;
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
first_page = __pa(first_page);
while (npages--) {
iopte_val(*iopte) = (IOPTE_CONSISTENT(ctx) |
IOPTE_WRITE |
(first_page & IOPTE_PAGE));
iopte++;
first_page += IO_PAGE_SIZE;
}
{
int i;
u32 daddr = *dma_addrp;
npages = size >> IO_PAGE_SHIFT;
for (i = 0; i < npages; i++) {
pci_iommu_write(iommu->iommu_flush, daddr);
daddr += IO_PAGE_SIZE;
}
}
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
/* Free and unmap a consistent DMA translation. */
void pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
iopte_t *iopte;
unsigned long flags, order, npages, i, ctx;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
iopte = iommu->page_table +
((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
if ((iopte - iommu->page_table) ==
iommu->lowest_consistent_map) {
iopte_t *walk = iopte + npages;
iopte_t *limit;
limit = (iommu->page_table +
(1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
while (walk < limit) {
if (!IOPTE_IS_DUMMY(iommu, walk))
break;
walk++;
}
iommu->lowest_consistent_map =
(walk - iommu->page_table);
}
/* Data for consistent mappings cannot enter the streaming
* buffers, so we only need to update the TSB. We flush
* the IOMMU here as well to prevent conflicts with the
* streaming mapping deferred tlb flush scheme.
*/
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
for (i = 0; i < npages; i++, iopte++)
iopte_make_dummy(iommu, iopte);
if (iommu->iommu_ctxflush) {
pci_iommu_write(iommu->iommu_ctxflush, ctx);
} else {
for (i = 0; i < npages; i++) {
u32 daddr = dvma + (i << IO_PAGE_SHIFT);
pci_iommu_write(iommu->iommu_flush, daddr);
}
}
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
/* Map a single buffer at PTR of SZ bytes for PCI DMA
* in streaming mode.
*/
dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr, ctx;
u32 bus_addr, ret;
unsigned long iopte_protection;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
if (direction == PCI_DMA_NONE)
BUG();
oaddr = (unsigned long)ptr;
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
spin_lock_irqsave(&iommu->lock, flags);
base = alloc_streaming_cluster(iommu, npages);
if (base == NULL)
goto bad;
bus_addr = (iommu->page_table_map_base +
((base - iommu->page_table) << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
iopte_protection = IOPTE_CONSISTENT(ctx);
if (direction != PCI_DMA_TODEVICE)
iopte_protection |= IOPTE_WRITE;
for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
iopte_val(*base) = iopte_protection | base_paddr;
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
return PCI_DMA_ERROR_CODE;
}
static void pci_strbuf_flush(struct pci_strbuf *strbuf, struct pci_iommu *iommu, u32 vaddr, unsigned long ctx, unsigned long npages, int direction)
{
int limit;
if (strbuf->strbuf_ctxflush &&
iommu->iommu_ctxflush) {
unsigned long matchreg, flushreg;
u64 val;
flushreg = strbuf->strbuf_ctxflush;
matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx);
pci_iommu_write(flushreg, ctx);
val = pci_iommu_read(matchreg);
val &= 0xffff;
if (!val)
goto do_flush_sync;
while (val) {
if (val & 0x1)
pci_iommu_write(flushreg, ctx);
val >>= 1;
}
val = pci_iommu_read(matchreg);
if (unlikely(val)) {
printk(KERN_WARNING "pci_strbuf_flush: ctx flush "
"timeout matchreg[%lx] ctx[%lx]\n",
val, ctx);
goto do_page_flush;
}
} else {
unsigned long i;
do_page_flush:
for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
pci_iommu_write(strbuf->strbuf_pflush, vaddr);
}
do_flush_sync:
/* If the device could not have possibly put dirty data into
* the streaming cache, no flush-flag synchronization needs
* to be performed.
*/
if (direction == PCI_DMA_TODEVICE)
return;
PCI_STC_FLUSHFLAG_INIT(strbuf);
pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
(void) pci_iommu_read(iommu->write_complete_reg);
limit = 100000;
while (!PCI_STC_FLUSHFLAG_SET(strbuf)) {
limit--;
if (!limit)
break;
udelay(1);
rmb();
}
if (!limit)
printk(KERN_WARNING "pci_strbuf_flush: flushflag timeout "
"vaddr[%08x] ctx[%lx] npages[%ld]\n",
vaddr, ctx, npages);
}
/* Unmap a single streaming mode DMA translation. */
void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, ctx;
if (direction == PCI_DMA_NONE)
BUG();
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
#ifdef DEBUG_PCI_IOMMU
if (IOPTE_IS_DUMMY(iommu, base))
printk("pci_unmap_single called on non-mapped region %08x,%08x from %016lx\n",
bus_addr, sz, __builtin_return_address(0));
#endif
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
/* Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
/* Step 1: Kick data out of streaming buffers if necessary. */
if (strbuf->strbuf_enabled)
pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
/* Step 2: Clear out first TSB entry. */
iopte_make_dummy(iommu, base);
free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base,
npages, ctx);
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg,
int nused, int nelems, unsigned long iopte_protection)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg + nelems;
int i;
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg++;
}
pteval = iopte_protection | (pteval & IOPTE_PAGE);
while (len > 0) {
*iopte++ = __iopte(pteval);
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg++;
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg < sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg++;
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg++;
}
}
/* Map a set of buffers described by SGLIST with NELEMS array
* elements in streaming mode for PCI DMA.
* When making changes here, inspect the assembly output. I was having
* hard time to kepp this routine out of using stack slots for holding variables.
*/
int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
unsigned long flags, ctx, npages, iopte_protection;
iopte_t *base;
u32 dma_base;
struct scatterlist *sgtmp;
int used;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
sglist->dma_address =
pci_map_single(pdev,
(page_address(sglist->page) + sglist->offset),
sglist->length, direction);
sglist->dma_length = sglist->length;
return 1;
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
if (direction == PCI_DMA_NONE)
BUG();
/* Step 1: Prepare scatter list. */
npages = prepare_sg(sglist, nelems);
/* Step 2: Allocate a cluster. */
spin_lock_irqsave(&iommu->lock, flags);
base = alloc_streaming_cluster(iommu, npages);
if (base == NULL)
goto bad;
dma_base = iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT);
/* Step 3: Normalize DMA addresses. */
used = nelems;
sgtmp = sglist;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp++;
used--;
}
used = nelems - used;
/* Step 4: Choose a context if necessary. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
/* Step 5: Create the mappings. */
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
iopte_protection = IOPTE_CONSISTENT(ctx);
if (direction != PCI_DMA_TODEVICE)
iopte_protection |= IOPTE_WRITE;
fill_sg (base, sglist, used, nelems, iopte_protection);
#ifdef VERIFY_SG
verify_sglist(sglist, nelems, base, npages);
#endif
spin_unlock_irqrestore(&iommu->lock, flags);
return used;
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
return PCI_DMA_ERROR_CODE;
}
/* Unmap a set of streaming mode DMA translations. */
void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
iopte_t *base;
unsigned long flags, ctx, i, npages;
u32 bus_addr;
if (direction == PCI_DMA_NONE)
BUG();
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
bus_addr = sglist->dma_address & IO_PAGE_MASK;
for (i = 1; i < nelems; i++)
if (sglist[i].dma_length == 0)
break;
i--;
npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
#ifdef DEBUG_PCI_IOMMU
if (IOPTE_IS_DUMMY(iommu, base))
printk("pci_unmap_sg called on non-mapped region %016lx,%d from %016lx\n", sglist->dma_address, nelems, __builtin_return_address(0));
#endif
spin_lock_irqsave(&iommu->lock, flags);
/* Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
/* Step 1: Kick data out of streaming buffers if necessary. */
if (strbuf->strbuf_enabled)
pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
/* Step 2: Clear out first TSB entry. */
iopte_make_dummy(iommu, base);
free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base,
npages, ctx);
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
/* Make physical memory consistent for a single
* streaming mode DMA translation after a transfer.
*/
void pci_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
unsigned long flags, ctx, npages;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
/* Make physical memory consistent for a set of streaming
* mode DMA translations after a transfer.
*/
void pci_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
struct pci_strbuf *strbuf;
unsigned long flags, ctx, npages, i;
u32 bus_addr;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
strbuf = &pcp->pbm->stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
for(i = 1; i < nelems; i++)
if (!sglist[i].dma_length)
break;
i--;
npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length)
- bus_addr) >> IO_PAGE_SHIFT;
pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
{
struct pci_dev *ali_isa_bridge;
u8 val;
/* ALI sound chips generate 31-bits of DMA, a special register
* determines what bit 31 is emitted as.
*/
ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
PCI_DEVICE_ID_AL_M1533,
NULL);
pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
if (set_bit)
val |= 0x01;
else
val &= ~0x01;
pci_write_config_byte(ali_isa_bridge, 0x7e, val);
pci_dev_put(ali_isa_bridge);
}
int pci_dma_supported(struct pci_dev *pdev, u64 device_mask)
{
struct pcidev_cookie *pcp = pdev->sysdata;
u64 dma_addr_mask;
if (pdev == NULL) {
dma_addr_mask = 0xffffffff;
} else {
struct pci_iommu *iommu = pcp->pbm->iommu;
dma_addr_mask = iommu->dma_addr_mask;
if (pdev->vendor == PCI_VENDOR_ID_AL &&
pdev->device == PCI_DEVICE_ID_AL_M5451 &&
device_mask == 0x7fffffff) {
ali_sound_dma_hack(pdev,
(dma_addr_mask & 0x80000000) != 0);
return 1;
}
}
if (device_mask >= (1UL << 32UL))
return 0;
return (device_mask & dma_addr_mask) == dma_addr_mask;
}