original_kernel/drivers/isdn/hisax/hfc_pci.c

1748 lines
53 KiB
C
Raw Normal View History

/* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
*
* low level driver for CCD<EFBFBD>s hfc-pci based cards
*
* Author Werner Cornelius
* based on existing driver for CCD hfc ISA cards
* Copyright by Werner Cornelius <werner@isdn4linux.de>
* by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
*/
#include <linux/init.h>
#include <linux/config.h>
#include "hisax.h"
#include "hfc_pci.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/interrupt.h>
extern const char *CardType[];
static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
/* table entry in the PCI devices list */
typedef struct {
int vendor_id;
int device_id;
char *vendor_name;
char *card_name;
} PCI_ENTRY;
#define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
#define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
static const PCI_ENTRY id_list[] =
{
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
{PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
{PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
{PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
{PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
{PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
{PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
{0, 0, NULL, NULL},
};
#ifdef CONFIG_PCI
/******************************************/
/* free hardware resources used by driver */
/******************************************/
void
release_io_hfcpci(struct IsdnCardState *cs)
{
printk(KERN_INFO "HiSax: release hfcpci at %p\n",
cs->hw.hfcpci.pci_io);
cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
mdelay(10);
Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
mdelay(10);
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
del_timer(&cs->hw.hfcpci.timer);
kfree(cs->hw.hfcpci.share_start);
cs->hw.hfcpci.share_start = NULL;
iounmap((void *)cs->hw.hfcpci.pci_io);
}
/********************************************************************************/
/* function called to reset the HFC PCI chip. A complete software reset of chip */
/* and fifos is done. */
/********************************************************************************/
static void
reset_hfcpci(struct IsdnCardState *cs)
{
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
printk(KERN_INFO "HFC_PCI: resetting card\n");
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
mdelay(10);
Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
mdelay(10);
if (Read_hfc(cs, HFCPCI_STATUS) & 2)
printk(KERN_WARNING "HFC-PCI init bit busy\n");
cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
cs->hw.hfcpci.bswapped = 0; /* no exchange */
cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCPCI_INT_S1));
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
cs->hw.hfcpci.sctrl_r = 0;
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
/* Init GCI/IOM2 in master mode */
/* Slots 0 and 1 are set for B-chan 1 and 2 */
/* D- and monitor/CI channel are not enabled */
/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
/* STIO2 is used as data input, B1+B2 from IOM->ST */
/* ST B-channel send disabled -> continous 1s */
/* The IOM slots are always enabled */
cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
/* Finally enable IRQ output */
cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
if (Read_hfc(cs, HFCPCI_INT_S1));
}
/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcpci_Timer(struct IsdnCardState *cs)
{
cs->hw.hfcpci.timer.expires = jiffies + 75;
/* WD RESET */
/* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
add_timer(&cs->hw.hfcpci.timer);
*/
}
/*********************************/
/* schedule a new D-channel task */
/*********************************/
static void
sched_event_D_pci(struct IsdnCardState *cs, int event)
{
test_and_set_bit(event, &cs->event);
schedule_work(&cs->tqueue);
}
/*********************************/
/* schedule a new b_channel task */
/*********************************/
static void
hfcpci_sched_event(struct BCState *bcs, int event)
{
test_and_set_bit(event, &bcs->event);
schedule_work(&bcs->tqueue);
}
/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return (&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return (&cs->bcs[1]);
else
return (NULL);
}
/***************************************/
/* clear the desired B-channel rx fifo */
/***************************************/
static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
{ u_char fifo_state;
bzfifo_type *bzr;
if (fifo) {
bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
} else {
bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
}
if (fifo_state)
cs->hw.hfcpci.fifo_en ^= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
bzr->f1 = MAX_B_FRAMES;
bzr->f2 = bzr->f1; /* init F pointers to remain constant */
if (fifo_state)
cs->hw.hfcpci.fifo_en |= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}
/***************************************/
/* clear the desired B-channel tx fifo */
/***************************************/
static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
{ u_char fifo_state;
bzfifo_type *bzt;
if (fifo) {
bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
} else {
bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
}
if (fifo_state)
cs->hw.hfcpci.fifo_en ^= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
bzt->f1 = MAX_B_FRAMES;
bzt->f2 = bzt->f1; /* init F pointers to remain constant */
if (fifo_state)
cs->hw.hfcpci.fifo_en |= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}
/*********************************************/
/* read a complete B-frame out of the buffer */
/*********************************************/
static struct sk_buff
*
hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
{
u_char *ptr, *ptr1, new_f2;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int total, maxlen, new_z2;
z_type *zp;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfcpci_empty_fifo");
zp = &bz->za[bz->f2]; /* point to Z-Regs */
new_z2 = zp->z2 + count; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
(*(bdata + (zp->z1 - B_SUB_VAL)))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
skb = NULL;
} else if (!(skb = dev_alloc_skb(count - 3)))
printk(KERN_WARNING "HFCPCI: receive out of memory\n");
else {
total = count;
count -= 3;
ptr = skb_put(skb, count);
if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = count; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
count -= maxlen;
if (count) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, count); /* rest */
}
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
}
return (skb);
}
/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int maxlen;
int rcnt, total;
int count = 5;
u_char *ptr, *ptr1;
dfifo_type *df;
z_type *zp;
df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return (1);
}
while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
zp = &df->za[df->f2 & D_FREG_MASK];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += D_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
df->f1, df->f2, zp->z1, zp->z2, rcnt);
if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
(df->data[zp->z1])) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
} else if ((skb = dev_alloc_skb(rcnt - 3))) {
total = rcnt;
rcnt -= 3;
ptr = skb_put(skb, rcnt);
if (zp->z2 + rcnt <= D_FIFO_SIZE)
maxlen = rcnt; /* complete transfer */
else
maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
ptr1 = df->data + zp->z2; /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
rcnt -= maxlen;
if (rcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = df->data; /* start of buffer */
memcpy(ptr, ptr1, rcnt); /* rest */
}
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
skb_queue_tail(&cs->rq, skb);
sched_event_D_pci(cs, D_RCVBUFREADY);
} else
printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return (1);
}
/*******************************************************************************/
/* check for transparent receive data and read max one threshold size if avail */
/*******************************************************************************/
int
hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
{
unsigned short *z1r, *z2r;
int new_z2, fcnt, maxlen;
struct sk_buff *skb;
u_char *ptr, *ptr1;
z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
z2r = z1r + 1;
if (!(fcnt = *z1r - *z2r))
return (0); /* no data avail */
if (fcnt <= 0)
fcnt += B_FIFO_SIZE; /* bytes actually buffered */
if (fcnt > HFCPCI_BTRANS_THRESHOLD)
fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
new_z2 = *z2r + fcnt; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
if (!(skb = dev_alloc_skb(fcnt)))
printk(KERN_WARNING "HFCPCI: receive out of memory\n");
else {
ptr = skb_put(skb, fcnt);
if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = fcnt; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
fcnt -= maxlen;
if (fcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, fcnt); /* rest */
}
skb_queue_tail(&bcs->rqueue, skb);
hfcpci_sched_event(bcs, B_RCVBUFREADY);
}
*z2r = new_z2; /* new position */
return (1);
} /* hfcpci_empty_fifo_trans */
/**********************************/
/* B-channel main receive routine */
/**********************************/
void
main_rec_hfcpci(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int rcnt, real_fifo;
int receive, count = 5;
struct sk_buff *skb;
bzfifo_type *bz;
u_char *bdata;
z_type *zp;
if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
real_fifo = 1;
} else {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
real_fifo = 0;
}
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_data %d blocked", bcs->channel);
return;
}
if (bz->f1 != bz->f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
bcs->channel, bz->f1, bz->f2);
zp = &bz->za[bz->f2];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += B_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, zp->z1, zp->z2, rcnt);
if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
hfcpci_sched_event(bcs, B_RCVBUFREADY);
}
rcnt = bz->f1 - bz->f2;
if (rcnt < 0)
rcnt += MAX_B_FRAMES + 1;
if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
rcnt = 0;
hfcpci_clear_fifo_rx(cs, real_fifo);
}
cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
if (rcnt > 1)
receive = 1;
else
receive = 0;
} else if (bcs->mode == L1_MODE_TRANS)
receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
return;
}
/**************************/
/* D-channel send routine */
/**************************/
static void
hfcpci_fill_dfifo(struct IsdnCardState *cs)
{
int fcnt;
int count, new_z1, maxlen;
dfifo_type *df;
u_char *src, *dst, new_f1;
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
df->f1, df->f2,
df->za[df->f1 & D_FREG_MASK].z1);
fcnt = df->f1 - df->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_D_FRAMES - 1)) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
#ifdef ERROR_STATISTIC
cs->err_tx++;
#endif
return;
}
/* now determine free bytes in FIFO buffer */
count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
if (count <= 0)
count += D_FIFO_SIZE; /* count now contains available bytes */
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
cs->tx_skb->len, count);
if (count < cs->tx_skb->len) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
return;
}
count = cs->tx_skb->len; /* get frame len */
new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
src = cs->tx_skb->data; /* source pointer */
dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = df->data; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
df->f1 = new_f1; /* next frame */
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
return;
}
/**************************/
/* B-channel send routine */
/**************************/
static void
hfcpci_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int maxlen, fcnt;
int count, new_z1;
bzfifo_type *bz;
u_char *bdata;
u_char new_f1, *src, *dst;
unsigned short *z1t, *z2t;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
} else {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
}
if (bcs->mode == L1_MODE_TRANS) {
z1t = &bz->za[MAX_B_FRAMES].z1;
z2t = z1t + 1;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
bcs->channel, *z1t, *z2t);
fcnt = *z2t - *z1t;
if (fcnt <= 0)
fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
/* data is suitable for fifo */
count = bcs->tx_skb->len;
new_z1 = *z1t + count; /* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
src = bcs->tx_skb->data; /* source pointer */
dst = bdata + (*z1t - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
bcs->tx_cnt -= bcs->tx_skb->len;
fcnt += bcs->tx_skb->len;
*z1t = new_z1; /* now send data */
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
bcs->channel, bcs->tx_skb->len);
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
}
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
return;
}
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
bcs->channel, bz->f1, bz->f2,
bz->za[bz->f1].z1);
fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_B_FRAMES - 1)) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
return;
}
/* now determine free bytes in FIFO buffer */
count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
if (count <= 0)
count += B_FIFO_SIZE; /* count now contains available bytes */
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
bcs->channel, bcs->tx_skb->len,
count, current->state);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo no fifo mem");
return;
}
count = bcs->tx_skb->len; /* get frame len */
new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
src = bcs->tx_skb->data; /* source pointer */
dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
bz->za[new_f1].z1 = new_z1; /* for next buffer */
bz->f1 = new_f1; /* next frame */
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
return;
}
/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
switch (pr) {
case (PH_DATA | REQUEST):
case (PH_PULL | REQUEST):
case (PH_PULL | INDICATION):
st->l1.l1hw(st, pr, arg);
break;
case (PH_ACTIVATE | REQUEST):
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
break;
case (PH_TESTLOOP | REQUEST):
if (1 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B1");
if (2 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B2");
if (!(3 & (long) arg))
debugl1(cs, "PH_TEST_LOOP DISABLED");
st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
break;
default:
if (cs->debug)
debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
break;
}
}
/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
u_long flags;
int i = *(unsigned int *) ic->parm.num;
if ((ic->arg == 98) &&
(!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
udelay(10);
cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
cs->dc.hfcpci.ph_state = 1;
cs->hw.hfcpci.nt_mode = 1;
cs->hw.hfcpci.nt_timer = 0;
cs->stlist->l2.l2l1 = dch_nt_l2l1;
spin_unlock_irqrestore(&cs->lock, flags);
debugl1(cs, "NT mode activated");
return (0);
}
if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
(cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
return (-EINVAL);
spin_lock_irqsave(&cs->lock, flags);
if (i) {
cs->logecho = 1;
cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
} else {
cs->logecho = 0;
cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
}
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
cs->hw.hfcpci.ctmt &= ~2;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
} /* hfcpci_auxcmd */
/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
int rcnt;
int receive, count = 5;
bzfifo_type *bz;
u_char *bdata;
z_type *zp;
u_char *ptr, *ptr1, new_f2;
int total, maxlen, new_z2;
u_char e_buffer[256];
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "echo_rec_data blocked");
return;
}
if (bz->f1 != bz->f2) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
bz->f1, bz->f2);
zp = &bz->za[bz->f2];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += B_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
zp->z1, zp->z2, rcnt);
new_z2 = zp->z2 + rcnt; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
if ((rcnt > 256 + 3) || (count < 4) ||
(*(bdata + (zp->z1 - B_SUB_VAL)))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
} else {
total = rcnt;
rcnt -= 3;
ptr = e_buffer;
if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = rcnt; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
rcnt -= maxlen;
if (rcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, rcnt); /* rest */
}
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
if (cs->debug & DEB_DLOG_HEX) {
ptr = cs->dlog;
if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
*ptr++ = 'E';
*ptr++ = 'C';
*ptr++ = 'H';
*ptr++ = 'O';
*ptr++ = ':';
ptr += QuickHex(ptr, e_buffer, total - 3);
ptr--;
*ptr++ = '\n';
*ptr = 0;
HiSax_putstatus(cs, NULL, cs->dlog);
} else
HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
}
}
rcnt = bz->f1 - bz->f2;
if (rcnt < 0)
rcnt += MAX_B_FRAMES + 1;
if (rcnt > 1)
receive = 1;
else
receive = 0;
} else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
return;
} /* receive_emsg */
/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t
hfcpci_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
u_long flags;
struct IsdnCardState *cs = dev_id;
u_char exval;
struct BCState *bcs;
int count = 15;
u_char val, stat;
if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
return IRQ_NONE; /* not initialised */
}
spin_lock_irqsave(&cs->lock, flags);
if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
val = Read_hfc(cs, HFCPCI_INT_S1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
} else {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcpci.int_m1;
if (val & 0x40) { /* state machine irq */
exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
exval);
cs->dc.hfcpci.ph_state = exval;
sched_event_D_pci(cs, D_L1STATECHANGE);
val &= ~0x40;
}
if (val & 0x80) { /* timer irq */
if (cs->hw.hfcpci.nt_mode) {
if ((--cs->hw.hfcpci.nt_timer) < 0)
sched_event_D_pci(cs, D_L1STATECHANGE);
}
val &= ~0x80;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcpci.int_s1 |= val;
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
if (cs->hw.hfcpci.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcpci.int_s1;
cs->hw.hfcpci.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x08 IRQ");
} else
main_rec_hfcpci(bcs);
}
if (val & 0x10) {
if (cs->logecho)
receive_emsg(cs);
else if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x10 IRQ");
} else
main_rec_hfcpci(bcs);
}
if (val & 0x01) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
hfcpci_sched_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
hfcpci_sched_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
sched_event_D_pci(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcpci_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcpci_fill_dfifo irq blocked");
}
} else
sched_event_D_pci(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcpci.int_s1 && count--) {
val = cs->hw.hfcpci.int_s1;
cs->hw.hfcpci.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
} else
val = 0;
}
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcpci_dbusy_timer(struct IsdnCardState *cs)
{
}
/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
{
u_long flags;
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcpci_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcpci_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
switch ((int) arg) {
case (1):
Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
break;
case (2):
Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
break;
default:
spin_unlock_irqrestore(&cs->lock, flags);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg);
return;
}
cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
break;
}
}
/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
void
setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCPCI_l1hw;
}
/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcpci_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "send_data %d blocked", bcs->channel);
}
/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
void
mode_hfcpci(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int fifo2;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
fifo2 = bc;
if (cs->chanlimit > 1) {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
} else {
if (bc) {
if (mode != L1_MODE_NULL) {
cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
cs->hw.hfcpci.sctrl_e |= 0x80;
} else {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
}
fifo2 = 0;
} else {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
}
}
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
} else {
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
}
break;
case (L1_MODE_TRANS):
hfcpci_clear_fifo_rx(cs, fifo2);
hfcpci_clear_fifo_tx(cs, fifo2);
if (bc) {
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
cs->hw.hfcpci.ctmt |= 2;
cs->hw.hfcpci.conn &= ~0x18;
} else {
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
cs->hw.hfcpci.ctmt |= 1;
cs->hw.hfcpci.conn &= ~0x03;
}
break;
case (L1_MODE_HDLC):
hfcpci_clear_fifo_rx(cs, fifo2);
hfcpci_clear_fifo_tx(cs, fifo2);
if (bc) {
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
cs->hw.hfcpci.ctmt &= ~2;
cs->hw.hfcpci.conn &= ~0x18;
} else {
cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
cs->hw.hfcpci.ctmt &= ~1;
cs->hw.hfcpci.conn &= ~0x03;
}
break;
case (L1_MODE_EXTRN):
if (bc) {
cs->hw.hfcpci.conn |= 0x10;
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
} else {
cs->hw.hfcpci.conn |= 0x02;
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
}
break;
}
Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
}
/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcpci_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
u_long flags;
struct sk_buff *skb = arg;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
spin_unlock_irqrestore(&bcs->cs->lock, flags);
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
break;
}
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfcpci(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcpci(struct BCState *bcs)
{
mode_hfcpci(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcpcistate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfcpci_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcpci_bh(struct IsdnCardState *cs)
{
u_long flags;
// struct PStack *stptr;
if (!cs)
return;
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
if (!cs->hw.hfcpci.nt_mode)
switch (cs->dc.hfcpci.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
} else {
spin_lock_irqsave(&cs->lock, flags);
switch (cs->dc.hfcpci.ph_state) {
case (2):
if (cs->hw.hfcpci.nt_timer < 0) {
cs->hw.hfcpci.nt_timer = 0;
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCPCI_INT_S1));
Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 4);
cs->dc.hfcpci.ph_state = 4;
} else {
cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
}
break;
case (1):
case (3):
case (4):
cs->hw.hfcpci.nt_timer = 0;
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
break;
default:
break;
}
spin_unlock_irqrestore(&cs->lock, flags);
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
/********************************/
/* called for card init message */
/********************************/
void __init
inithfcpci(struct IsdnCardState *cs)
{
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_hfcpci;
cs->bcs[1].BC_Close = close_hfcpci;
cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
mode_hfcpci(cs->bcs, 0, 0);
mode_hfcpci(cs->bcs + 1, 0, 1);
}
/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCPCI: card_msg %x", mt);
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_hfcpci(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_hfcpci(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithfcpci(cs);
reset_hfcpci(cs);
spin_unlock_irqrestore(&cs->lock, flags);
msleep(80); /* Timeout 80ms */
/* now switch timer interrupt off */
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* reinit mode reg */
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
/* this variable is used as card index when more than one cards are present */
static struct pci_dev *dev_hfcpci __initdata = NULL;
#endif /* CONFIG_PCI */
int __init
setup_hfcpci(struct IsdnCard *card)
{
u_long flags;
struct IsdnCardState *cs = card->cs;
char tmp[64];
int i;
struct pci_dev *tmp_hfcpci = NULL;
#ifdef __BIG_ENDIAN
#error "not running on big endian machines now"
#endif
strcpy(tmp, hfcpci_revision);
printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
#ifdef CONFIG_PCI
cs->hw.hfcpci.int_s1 = 0;
cs->dc.hfcpci.ph_state = 0;
cs->hw.hfcpci.fifo = 255;
if (cs->typ == ISDN_CTYPE_HFC_PCI) {
i = 0;
while (id_list[i].vendor_id) {
tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
id_list[i].device_id,
dev_hfcpci);
i++;
if (tmp_hfcpci) {
if (pci_enable_device(tmp_hfcpci))
continue;
pci_set_master(tmp_hfcpci);
if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
continue;
else
break;
}
}
if (tmp_hfcpci) {
i--;
dev_hfcpci = tmp_hfcpci; /* old device */
cs->hw.hfcpci.dev = dev_hfcpci;
cs->irq = dev_hfcpci->irq;
if (!cs->irq) {
printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
return (0);
}
cs->hw.hfcpci.pci_io = (char *) dev_hfcpci->resource[ 1].start;
printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
} else {
printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
return (0);
}
if (!cs->hw.hfcpci.pci_io) {
printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
return (0);
}
/* Allocate memory for FIFOS */
/* Because the HFC-PCI needs a 32K physical alignment, we */
/* need to allocate the double mem and align the address */
if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
return 0;
}
cs->hw.hfcpci.fifos = (void *)
(((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
printk(KERN_INFO
"HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n",
(u_int) cs->hw.hfcpci.pci_io,
(u_int) cs->hw.hfcpci.fifos,
(u_int) virt_to_bus(cs->hw.hfcpci.fifos),
cs->irq, HZ);
spin_lock_irqsave(&cs->lock, flags);
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
cs->hw.hfcpci.int_m1 = 0;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
/* At this point the needed PCI config is done */
/* fifos are still not enabled */
INIT_WORK(&cs->tqueue, (void *)(void *) hfcpci_bh, cs);
cs->setstack_d = setstack_hfcpci;
cs->BC_Send_Data = &hfcpci_send_data;
cs->readisac = NULL;
cs->writeisac = NULL;
cs->readisacfifo = NULL;
cs->writeisacfifo = NULL;
cs->BC_Read_Reg = NULL;
cs->BC_Write_Reg = NULL;
cs->irq_func = &hfcpci_interrupt;
cs->irq_flags |= SA_SHIRQ;
cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
cs->hw.hfcpci.timer.data = (long) cs;
init_timer(&cs->hw.hfcpci.timer);
cs->cardmsg = &hfcpci_card_msg;
cs->auxcmd = &hfcpci_auxcmd;
spin_unlock_irqrestore(&cs->lock, flags);
return (1);
} else
return (0); /* no valid card type */
#else
printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n");
return (0);
#endif /* CONFIG_PCI */
}