original_kernel/arch/mips/kernel/setup.c

576 lines
14 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995 Waldorf Electronics
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
* Copyright (C) 1996 Stoned Elipot
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/utsname.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/major.h>
#include <linux/kdev_t.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/mmzone.h>
#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/system.h>
struct cpuinfo_mips cpu_data[NR_CPUS];
EXPORT_SYMBOL(cpu_data);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
/*
* Despite it's name this variable is even if we don't have PCI
*/
unsigned int PCI_DMA_BUS_IS_PHYS;
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
/*
* Setup information
*
* These are initialized so they are in the .data section
*/
unsigned long mips_machtype = MACH_UNKNOWN;
unsigned long mips_machgroup = MACH_GROUP_UNKNOWN;
EXPORT_SYMBOL(mips_machtype);
EXPORT_SYMBOL(mips_machgroup);
struct boot_mem_map boot_mem_map;
static char command_line[CL_SIZE];
char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
/*
* mips_io_port_base is the begin of the address space to which x86 style
* I/O ports are mapped.
*/
const unsigned long mips_io_port_base = -1;
EXPORT_SYMBOL(mips_io_port_base);
/*
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
* for the processor.
*/
unsigned long isa_slot_offset;
EXPORT_SYMBOL(isa_slot_offset);
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
void __init add_memory_region(phys_t start, phys_t size, long type)
{
int x = boot_mem_map.nr_map;
struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
/*
* Try to merge with previous entry if any. This is far less than
* perfect but is sufficient for most real world cases.
*/
if (x && prev->addr + prev->size == start && prev->type == type) {
prev->size += size;
return;
}
if (x == BOOT_MEM_MAP_MAX) {
printk("Ooops! Too many entries in the memory map!\n");
return;
}
boot_mem_map.map[x].addr = start;
boot_mem_map.map[x].size = size;
boot_mem_map.map[x].type = type;
boot_mem_map.nr_map++;
}
static void __init print_memory_map(void)
{
int i;
const int field = 2 * sizeof(unsigned long);
for (i = 0; i < boot_mem_map.nr_map; i++) {
printk(" memory: %0*Lx @ %0*Lx ",
field, (unsigned long long) boot_mem_map.map[i].size,
field, (unsigned long long) boot_mem_map.map[i].addr);
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
printk("(usable)\n");
break;
case BOOT_MEM_ROM_DATA:
printk("(ROM data)\n");
break;
case BOOT_MEM_RESERVED:
printk("(reserved)\n");
break;
default:
printk("type %lu\n", boot_mem_map.map[i].type);
break;
}
}
}
static inline void parse_cmdline_early(void)
{
char c = ' ', *to = command_line, *from = saved_command_line;
unsigned long start_at, mem_size;
int len = 0;
int usermem = 0;
printk("Determined physical RAM map:\n");
print_memory_map();
for (;;) {
/*
* "mem=XXX[kKmM]" defines a memory region from
* 0 to <XXX>, overriding the determined size.
* "mem=XXX[KkmM]@YYY[KkmM]" defines a memory region from
* <YYY> to <YYY>+<XXX>, overriding the determined size.
*/
if (c == ' ' && !memcmp(from, "mem=", 4)) {
if (to != command_line)
to--;
/*
* If a user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
boot_mem_map.nr_map = 0;
usermem = 1;
}
mem_size = memparse(from + 4, &from);
if (*from == '@')
start_at = memparse(from + 1, &from);
else
start_at = 0;
add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
}
c = *(from++);
if (!c)
break;
if (CL_SIZE <= ++len)
break;
*(to++) = c;
}
*to = '\0';
if (usermem) {
printk("User-defined physical RAM map:\n");
print_memory_map();
}
}
static inline int parse_rd_cmdline(unsigned long* rd_start, unsigned long* rd_end)
{
/*
* "rd_start=0xNNNNNNNN" defines the memory address of an initrd
* "rd_size=0xNN" it's size
*/
unsigned long start = 0;
unsigned long size = 0;
unsigned long end;
char cmd_line[CL_SIZE];
char *start_str;
char *size_str;
char *tmp;
strcpy(cmd_line, command_line);
*command_line = 0;
tmp = cmd_line;
/* Ignore "rd_start=" strings in other parameters. */
start_str = strstr(cmd_line, "rd_start=");
if (start_str && start_str != cmd_line && *(start_str - 1) != ' ')
start_str = strstr(start_str, " rd_start=");
while (start_str) {
if (start_str != cmd_line)
strncat(command_line, tmp, start_str - tmp);
start = memparse(start_str + 9, &start_str);
tmp = start_str + 1;
start_str = strstr(start_str, " rd_start=");
}
if (*tmp)
strcat(command_line, tmp);
strcpy(cmd_line, command_line);
*command_line = 0;
tmp = cmd_line;
/* Ignore "rd_size" strings in other parameters. */
size_str = strstr(cmd_line, "rd_size=");
if (size_str && size_str != cmd_line && *(size_str - 1) != ' ')
size_str = strstr(size_str, " rd_size=");
while (size_str) {
if (size_str != cmd_line)
strncat(command_line, tmp, size_str - tmp);
size = memparse(size_str + 8, &size_str);
tmp = size_str + 1;
size_str = strstr(size_str, " rd_size=");
}
if (*tmp)
strcat(command_line, tmp);
#ifdef CONFIG_MIPS64
/* HACK: Guess if the sign extension was forgotten */
if (start > 0x0000000080000000 && start < 0x00000000ffffffff)
start |= 0xffffffff00000000;
#endif
end = start + size;
if (start && end) {
*rd_start = start;
*rd_end = end;
return 1;
}
return 0;
}
#define PFN_UP(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
#define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
#define PFN_PHYS(x) ((x) << PAGE_SHIFT)
#define MAXMEM HIGHMEM_START
#define MAXMEM_PFN PFN_DOWN(MAXMEM)
static inline void bootmem_init(void)
{
unsigned long start_pfn;
unsigned long reserved_end = (unsigned long)&_end;
#ifndef CONFIG_SGI_IP27
unsigned long first_usable_pfn;
unsigned long bootmap_size;
int i;
#endif
#ifdef CONFIG_BLK_DEV_INITRD
int initrd_reserve_bootmem = 0;
/* Board specific code should have set up initrd_start and initrd_end */
ROOT_DEV = Root_RAM0;
if (parse_rd_cmdline(&initrd_start, &initrd_end)) {
reserved_end = max(reserved_end, initrd_end);
initrd_reserve_bootmem = 1;
} else {
unsigned long tmp;
u32 *initrd_header;
tmp = ((reserved_end + PAGE_SIZE-1) & PAGE_MASK) - sizeof(u32) * 2;
if (tmp < reserved_end)
tmp += PAGE_SIZE;
initrd_header = (u32 *)tmp;
if (initrd_header[0] == 0x494E5244) {
initrd_start = (unsigned long)&initrd_header[2];
initrd_end = initrd_start + initrd_header[1];
reserved_end = max(reserved_end, initrd_end);
initrd_reserve_bootmem = 1;
}
}
#endif /* CONFIG_BLK_DEV_INITRD */
/*
* Partially used pages are not usable - thus
* we are rounding upwards.
*/
start_pfn = PFN_UP(CPHYSADDR(reserved_end));
#ifndef CONFIG_SGI_IP27
/* Find the highest page frame number we have available. */
max_pfn = 0;
first_usable_pfn = -1UL;
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (start >= end)
continue;
if (end > max_pfn)
max_pfn = end;
if (start < first_usable_pfn) {
if (start > start_pfn) {
first_usable_pfn = start;
} else if (end > start_pfn) {
first_usable_pfn = start_pfn;
}
}
}
/*
* Determine low and high memory ranges
*/
max_low_pfn = max_pfn;
if (max_low_pfn > MAXMEM_PFN) {
max_low_pfn = MAXMEM_PFN;
#ifndef CONFIG_HIGHMEM
/* Maximum memory usable is what is directly addressable */
printk(KERN_WARNING "Warning only %ldMB will be used.\n",
MAXMEM >> 20);
printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
#endif
}
#ifdef CONFIG_HIGHMEM
/*
* Crude, we really should make a better attempt at detecting
* highstart_pfn
*/
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > MAXMEM_PFN) {
highstart_pfn = MAXMEM_PFN;
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
(highend_pfn - highstart_pfn) >> (20 - PAGE_SHIFT));
}
#endif
memory_present(0, first_usable_pfn, max_low_pfn);
/* Initialize the boot-time allocator with low memory only. */
bootmap_size = init_bootmem(first_usable_pfn, max_low_pfn);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long curr_pfn, last_pfn, size;
/*
* Reserve usable memory.
*/
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(boot_mem_map.map[i].addr);
if (curr_pfn >= max_low_pfn)
continue;
if (curr_pfn < start_pfn)
curr_pfn = start_pfn;
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
/*
* Only register lowmem part of lowmem segment with bootmem.
*/
size = last_pfn - curr_pfn;
if (curr_pfn > PFN_DOWN(HIGHMEM_START))
continue;
if (curr_pfn + size - 1 > PFN_DOWN(HIGHMEM_START))
size = PFN_DOWN(HIGHMEM_START) - curr_pfn;
if (!size)
continue;
/*
* ... finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
/* Register lowmem ranges */
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
}
/* Reserve the bootmap memory. */
reserve_bootmem(PFN_PHYS(first_usable_pfn), bootmap_size);
#endif /* CONFIG_SGI_IP27 */
#ifdef CONFIG_BLK_DEV_INITRD
initrd_below_start_ok = 1;
if (initrd_start) {
unsigned long initrd_size = ((unsigned char *)initrd_end) - ((unsigned char *)initrd_start);
printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
(void *)initrd_start, initrd_size);
if (CPHYSADDR(initrd_end) > PFN_PHYS(max_low_pfn)) {
printk("initrd extends beyond end of memory "
"(0x%0*Lx > 0x%0*Lx)\ndisabling initrd\n",
sizeof(long) * 2,
(unsigned long long)CPHYSADDR(initrd_end),
sizeof(long) * 2,
(unsigned long long)PFN_PHYS(max_low_pfn));
initrd_start = initrd_end = 0;
initrd_reserve_bootmem = 0;
}
if (initrd_reserve_bootmem)
reserve_bootmem(CPHYSADDR(initrd_start), initrd_size);
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
static inline void resource_init(void)
{
int i;
#if defined(CONFIG_MIPS64) && !defined(CONFIG_BUILD_ELF64)
/*
* The 64bit code in 32bit object format trick can't represent
* 64bit wide relocations for linker script symbols.
*/
code_resource.start = CPHYSADDR(&_text);
code_resource.end = CPHYSADDR(&_etext) - 1;
data_resource.start = CPHYSADDR(&_etext);
data_resource.end = CPHYSADDR(&_edata) - 1;
#else
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&_etext) - 1;
data_resource.start = virt_to_phys(&_etext);
data_resource.end = virt_to_phys(&_edata) - 1;
#endif
/*
* Request address space for all standard RAM.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
struct resource *res;
unsigned long start, end;
start = boot_mem_map.map[i].addr;
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
if (start >= MAXMEM)
continue;
if (end >= MAXMEM)
end = MAXMEM - 1;
res = alloc_bootmem(sizeof(struct resource));
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
case BOOT_MEM_ROM_DATA:
res->name = "System RAM";
break;
case BOOT_MEM_RESERVED:
default:
res->name = "reserved";
}
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
}
#undef PFN_UP
#undef PFN_DOWN
#undef PFN_PHYS
#undef MAXMEM
#undef MAXMEM_PFN
static int __initdata earlyinit_debug;
static int __init earlyinit_debug_setup(char *str)
{
earlyinit_debug = 1;
return 1;
}
__setup("earlyinit_debug", earlyinit_debug_setup);
extern initcall_t __earlyinitcall_start, __earlyinitcall_end;
static void __init do_earlyinitcalls(void)
{
initcall_t *call, *start, *end;
start = &__earlyinitcall_start;
end = &__earlyinitcall_end;
for (call = start; call < end; call++) {
if (earlyinit_debug)
printk("calling earlyinitcall 0x%p\n", *call);
(*call)();
}
}
void __init setup_arch(char **cmdline_p)
{
cpu_probe();
prom_init();
cpu_report();
#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
/* call board setup routine */
do_earlyinitcalls();
strlcpy(command_line, arcs_cmdline, sizeof(command_line));
strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_cmdline_early();
bootmem_init();
sparse_init();
paging_init();
resource_init();
}
int __init fpu_disable(char *s)
{
cpu_data[0].options &= ~MIPS_CPU_FPU;
return 1;
}
__setup("nofpu", fpu_disable);