2005-04-17 06:20:36 +08:00
|
|
|
#ifndef _ASM_M32R_BITOPS_H
|
|
|
|
#define _ASM_M32R_BITOPS_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* linux/include/asm-m32r/bitops.h
|
|
|
|
*
|
|
|
|
* Copyright 1992, Linus Torvalds.
|
|
|
|
*
|
|
|
|
* M32R version:
|
|
|
|
* Copyright (C) 2001, 2002 Hitoshi Yamamoto
|
|
|
|
* Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <asm/assembler.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <asm/types.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These have to be done with inline assembly: that way the bit-setting
|
|
|
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
|
|
|
* was cleared before the operation and != 0 if it was not.
|
|
|
|
*
|
|
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* set_bit - Atomically set a bit in memory
|
|
|
|
* @nr: the bit to set
|
|
|
|
* @addr: the address to start counting from
|
|
|
|
*
|
|
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
|
|
* if you do not require the atomic guarantees.
|
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
|
*/
|
|
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "r6", "%1")
|
|
|
|
M32R_LOCK" %0, @%1; \n\t"
|
|
|
|
"or %0, %2; \n\t"
|
|
|
|
M32R_UNLOCK" %0, @%1; \n\t"
|
|
|
|
: "=&r" (tmp)
|
|
|
|
: "r" (a), "r" (mask)
|
|
|
|
: "memory"
|
|
|
|
#ifdef CONFIG_CHIP_M32700_TS1
|
|
|
|
, "r6"
|
|
|
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __set_bit - Set a bit in memory
|
|
|
|
* @nr: the bit to set
|
|
|
|
* @addr: the address to start counting from
|
|
|
|
*
|
|
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
|
* may be that only one operation succeeds.
|
|
|
|
*/
|
|
|
|
static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
*a |= mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clear_bit - Clears a bit in memory
|
|
|
|
* @nr: Bit to clear
|
|
|
|
* @addr: Address to start counting from
|
|
|
|
*
|
|
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
|
|
* in order to ensure changes are visible on other processors.
|
|
|
|
*/
|
|
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "r6", "%1")
|
|
|
|
M32R_LOCK" %0, @%1; \n\t"
|
|
|
|
"and %0, %2; \n\t"
|
|
|
|
M32R_UNLOCK" %0, @%1; \n\t"
|
|
|
|
: "=&r" (tmp)
|
|
|
|
: "r" (a), "r" (~mask)
|
|
|
|
: "memory"
|
|
|
|
#ifdef CONFIG_CHIP_M32700_TS1
|
|
|
|
, "r6"
|
|
|
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
|
|
|
|
{
|
|
|
|
unsigned long mask;
|
|
|
|
volatile unsigned long *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
*a &= ~mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __change_bit - Toggle a bit in memory
|
|
|
|
* @nr: the bit to set
|
|
|
|
* @addr: the address to start counting from
|
|
|
|
*
|
|
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
|
* may be that only one operation succeeds.
|
|
|
|
*/
|
|
|
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
*a ^= mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* change_bit - Toggle a bit in memory
|
|
|
|
* @nr: Bit to clear
|
|
|
|
* @addr: Address to start counting from
|
|
|
|
*
|
|
|
|
* change_bit() is atomic and may not be reordered.
|
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
|
*/
|
|
|
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "r6", "%1")
|
|
|
|
M32R_LOCK" %0, @%1; \n\t"
|
|
|
|
"xor %0, %2; \n\t"
|
|
|
|
M32R_UNLOCK" %0, @%1; \n\t"
|
|
|
|
: "=&r" (tmp)
|
|
|
|
: "r" (a), "r" (mask)
|
|
|
|
: "memory"
|
|
|
|
#ifdef CONFIG_CHIP_M32700_TS1
|
|
|
|
, "r6"
|
|
|
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* test_and_set_bit - Set a bit and return its old value
|
|
|
|
* @nr: Bit to set
|
|
|
|
* @addr: Address to count from
|
|
|
|
*
|
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
|
* It also implies a memory barrier.
|
|
|
|
*/
|
|
|
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "%1", "%2")
|
|
|
|
M32R_LOCK" %0, @%2; \n\t"
|
|
|
|
"mv %1, %0; \n\t"
|
|
|
|
"and %0, %3; \n\t"
|
|
|
|
"or %1, %3; \n\t"
|
|
|
|
M32R_UNLOCK" %1, @%2; \n\t"
|
|
|
|
: "=&r" (oldbit), "=&r" (tmp)
|
|
|
|
: "r" (a), "r" (mask)
|
|
|
|
: "memory"
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __test_and_set_bit - Set a bit and return its old value
|
|
|
|
* @nr: Bit to set
|
|
|
|
* @addr: Address to count from
|
|
|
|
*
|
|
|
|
* This operation is non-atomic and can be reordered.
|
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
*/
|
|
|
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
oldbit = (*a & mask);
|
|
|
|
*a |= mask;
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
* @nr: Bit to set
|
|
|
|
* @addr: Address to count from
|
|
|
|
*
|
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
|
* It also implies a memory barrier.
|
|
|
|
*/
|
|
|
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "%1", "%3")
|
|
|
|
M32R_LOCK" %0, @%3; \n\t"
|
|
|
|
"mv %1, %0; \n\t"
|
|
|
|
"and %0, %2; \n\t"
|
|
|
|
"not %2, %2; \n\t"
|
|
|
|
"and %1, %2; \n\t"
|
|
|
|
M32R_UNLOCK" %1, @%3; \n\t"
|
|
|
|
: "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
|
|
|
|
: "r" (a)
|
|
|
|
: "memory"
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
* @nr: Bit to set
|
|
|
|
* @addr: Address to count from
|
|
|
|
*
|
|
|
|
* This operation is non-atomic and can be reordered.
|
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
*/
|
|
|
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
oldbit = (*a & mask);
|
|
|
|
*a &= ~mask;
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* WARNING: non atomic and it can be reordered! */
|
|
|
|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
oldbit = (*a & mask);
|
|
|
|
*a ^= mask;
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* test_and_change_bit - Change a bit and return its old value
|
|
|
|
* @nr: Bit to set
|
|
|
|
* @addr: Address to count from
|
|
|
|
*
|
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
|
* It also implies a memory barrier.
|
|
|
|
*/
|
|
|
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask, oldbit;
|
|
|
|
volatile __u32 *a = addr;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
DCACHE_CLEAR("%0", "%1", "%2")
|
|
|
|
M32R_LOCK" %0, @%2; \n\t"
|
|
|
|
"mv %1, %0; \n\t"
|
|
|
|
"and %0, %3; \n\t"
|
|
|
|
"xor %1, %3; \n\t"
|
|
|
|
M32R_UNLOCK" %1, @%2; \n\t"
|
|
|
|
: "=&r" (oldbit), "=&r" (tmp)
|
|
|
|
: "r" (a), "r" (mask)
|
|
|
|
: "memory"
|
|
|
|
);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* test_bit - Determine whether a bit is set
|
|
|
|
* @nr: bit number to test
|
|
|
|
* @addr: Address to start counting from
|
|
|
|
*/
|
|
|
|
static __inline__ int test_bit(int nr, const volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
const volatile __u32 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 5);
|
|
|
|
mask = (1 << (nr & 0x1F));
|
|
|
|
|
|
|
|
return ((*a & mask) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ffz - find first zero in word.
|
|
|
|
* @word: The word to search
|
|
|
|
*
|
|
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
|
|
|
*/
|
|
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
|
|
|
|
word = ~word;
|
|
|
|
k = 0;
|
|
|
|
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
|
|
|
|
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
|
|
|
|
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
|
|
|
|
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
|
|
|
|
if (!(word & 0x00000001)) { k += 1; }
|
|
|
|
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find_first_zero_bit - find the first zero bit in a memory region
|
|
|
|
* @addr: The address to start the search at
|
|
|
|
* @size: The maximum size to search
|
|
|
|
*
|
|
|
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
|
|
|
* containing a bit.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
|
|
find_next_zero_bit((addr), (size), 0)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find_next_zero_bit - find the first zero bit in a memory region
|
|
|
|
* @addr: The address to base the search on
|
|
|
|
* @offset: The bitnumber to start searching at
|
|
|
|
* @size: The maximum size to search
|
|
|
|
*/
|
|
|
|
static __inline__ int find_next_zero_bit(const unsigned long *addr,
|
|
|
|
int size, int offset)
|
|
|
|
{
|
|
|
|
const unsigned long *p = addr + (offset >> 5);
|
|
|
|
unsigned long result = offset & ~31UL;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
if (offset >= size)
|
|
|
|
return size;
|
|
|
|
size -= result;
|
|
|
|
offset &= 31UL;
|
|
|
|
if (offset) {
|
|
|
|
tmp = *(p++);
|
|
|
|
tmp |= ~0UL >> (32-offset);
|
|
|
|
if (size < 32)
|
|
|
|
goto found_first;
|
|
|
|
if (~tmp)
|
|
|
|
goto found_middle;
|
|
|
|
size -= 32;
|
|
|
|
result += 32;
|
|
|
|
}
|
|
|
|
while (size & ~31UL) {
|
|
|
|
if (~(tmp = *(p++)))
|
|
|
|
goto found_middle;
|
|
|
|
result += 32;
|
|
|
|
size -= 32;
|
|
|
|
}
|
|
|
|
if (!size)
|
|
|
|
return result;
|
|
|
|
tmp = *p;
|
|
|
|
|
|
|
|
found_first:
|
|
|
|
tmp |= ~0UL << size;
|
|
|
|
found_middle:
|
|
|
|
return result + ffz(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __ffs - find first bit in word.
|
|
|
|
* @word: The word to search
|
|
|
|
*
|
|
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
|
|
*/
|
|
|
|
static __inline__ unsigned long __ffs(unsigned long word)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
|
|
|
|
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
|
|
|
|
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
|
|
|
|
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
|
|
|
|
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
|
|
|
|
if (!(word & 0x00000001)) { k += 1;}
|
|
|
|
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fls: find last bit set.
|
|
|
|
*/
|
|
|
|
#define fls(x) generic_fls(x)
|
2005-12-22 11:30:53 +08:00
|
|
|
#define fls64(x) generic_fls64(x)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Every architecture must define this function. It's the fastest
|
|
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
|
|
* bits is cleared.
|
|
|
|
*/
|
|
|
|
static inline int sched_find_first_bit(unsigned long *b)
|
|
|
|
{
|
|
|
|
if (unlikely(b[0]))
|
|
|
|
return __ffs(b[0]);
|
|
|
|
if (unlikely(b[1]))
|
|
|
|
return __ffs(b[1]) + 32;
|
|
|
|
if (unlikely(b[2]))
|
|
|
|
return __ffs(b[2]) + 64;
|
|
|
|
if (b[3])
|
|
|
|
return __ffs(b[3]) + 96;
|
|
|
|
return __ffs(b[4]) + 128;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find_next_bit - find the first set bit in a memory region
|
|
|
|
* @addr: The address to base the search on
|
|
|
|
* @offset: The bitnumber to start searching at
|
|
|
|
* @size: The maximum size to search
|
|
|
|
*/
|
|
|
|
static inline unsigned long find_next_bit(const unsigned long *addr,
|
|
|
|
unsigned long size, unsigned long offset)
|
|
|
|
{
|
|
|
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
|
|
|
unsigned int result = offset & ~31UL;
|
|
|
|
unsigned int tmp;
|
|
|
|
|
|
|
|
if (offset >= size)
|
|
|
|
return size;
|
|
|
|
size -= result;
|
|
|
|
offset &= 31UL;
|
|
|
|
if (offset) {
|
|
|
|
tmp = *p++;
|
|
|
|
tmp &= ~0UL << offset;
|
|
|
|
if (size < 32)
|
|
|
|
goto found_first;
|
|
|
|
if (tmp)
|
|
|
|
goto found_middle;
|
|
|
|
size -= 32;
|
|
|
|
result += 32;
|
|
|
|
}
|
|
|
|
while (size >= 32) {
|
|
|
|
if ((tmp = *p++) != 0)
|
|
|
|
goto found_middle;
|
|
|
|
result += 32;
|
|
|
|
size -= 32;
|
|
|
|
}
|
|
|
|
if (!size)
|
|
|
|
return result;
|
|
|
|
tmp = *p;
|
|
|
|
|
|
|
|
found_first:
|
|
|
|
tmp &= ~0UL >> (32 - size);
|
|
|
|
if (tmp == 0UL) /* Are any bits set? */
|
|
|
|
return result + size; /* Nope. */
|
|
|
|
found_middle:
|
|
|
|
return result + __ffs(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find_first_bit - find the first set bit in a memory region
|
|
|
|
* @addr: The address to start the search at
|
|
|
|
* @size: The maximum size to search
|
|
|
|
*
|
|
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
|
|
* containing a bit.
|
|
|
|
*/
|
|
|
|
#define find_first_bit(addr, size) \
|
|
|
|
find_next_bit((addr), (size), 0)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ffs - find first bit set
|
|
|
|
* @x: the word to search
|
|
|
|
*
|
|
|
|
* This is defined the same way as
|
|
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
|
|
* differs in spirit from the above ffz (man ffs).
|
|
|
|
*/
|
|
|
|
#define ffs(x) generic_ffs(x)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* hweightN - returns the hamming weight of a N-bit word
|
|
|
|
* @x: the word to weigh
|
|
|
|
*
|
|
|
|
* The Hamming Weight of a number is the total number of bits set in it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
|
|
#define hweight16(x) generic_hweight16(x)
|
|
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ext2_XXXX function
|
|
|
|
* orig: include/asm-sh/bitops.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
[PATCH] bitops: use non atomic operations for minix_*_bit() and ext2_*_bit()
Bitmap functions for the minix filesystem and the ext2 filesystem except
ext2_set_bit_atomic() and ext2_clear_bit_atomic() do not require the atomic
guarantees.
But these are defined by using atomic bit operations on several architectures.
(cris, frv, h8300, ia64, m32r, m68k, m68knommu, mips, s390, sh, sh64, sparc,
sparc64, v850, and xtensa)
This patch switches to non atomic bit operation.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26 17:39:05 +08:00
|
|
|
#define ext2_set_bit __test_and_set_bit
|
2005-04-17 06:20:36 +08:00
|
|
|
#define ext2_clear_bit __test_and_clear_bit
|
|
|
|
#define ext2_test_bit test_bit
|
|
|
|
#define ext2_find_first_zero_bit find_first_zero_bit
|
|
|
|
#define ext2_find_next_zero_bit find_next_zero_bit
|
|
|
|
#else
|
|
|
|
static inline int ext2_set_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u8 mask, oldbit;
|
|
|
|
volatile __u8 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 3);
|
|
|
|
mask = (1 << (nr & 0x07));
|
|
|
|
oldbit = (*a & mask);
|
|
|
|
*a |= mask;
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int ext2_clear_bit(int nr, volatile void * addr)
|
|
|
|
{
|
|
|
|
__u8 mask, oldbit;
|
|
|
|
volatile __u8 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 3);
|
|
|
|
mask = (1 << (nr & 0x07));
|
|
|
|
oldbit = (*a & mask);
|
|
|
|
*a &= ~mask;
|
|
|
|
|
|
|
|
return (oldbit != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int ext2_test_bit(int nr, const volatile void * addr)
|
|
|
|
{
|
|
|
|
__u32 mask;
|
|
|
|
const volatile __u8 *a = addr;
|
|
|
|
|
|
|
|
a += (nr >> 3);
|
|
|
|
mask = (1 << (nr & 0x07));
|
|
|
|
|
|
|
|
return ((mask & *a) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
|
|
|
|
static inline unsigned long ext2_find_next_zero_bit(void *addr,
|
|
|
|
unsigned long size, unsigned long offset)
|
|
|
|
{
|
|
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
|
|
unsigned long result = offset & ~31UL;
|
|
|
|
unsigned long tmp;
|
|
|
|
|
|
|
|
if (offset >= size)
|
|
|
|
return size;
|
|
|
|
size -= result;
|
|
|
|
offset &= 31UL;
|
|
|
|
if(offset) {
|
|
|
|
/* We hold the little endian value in tmp, but then the
|
|
|
|
* shift is illegal. So we could keep a big endian value
|
|
|
|
* in tmp, like this:
|
|
|
|
*
|
|
|
|
* tmp = __swab32(*(p++));
|
|
|
|
* tmp |= ~0UL >> (32-offset);
|
|
|
|
*
|
|
|
|
* but this would decrease preformance, so we change the
|
|
|
|
* shift:
|
|
|
|
*/
|
|
|
|
tmp = *(p++);
|
|
|
|
tmp |= __swab32(~0UL >> (32-offset));
|
|
|
|
if(size < 32)
|
|
|
|
goto found_first;
|
|
|
|
if(~tmp)
|
|
|
|
goto found_middle;
|
|
|
|
size -= 32;
|
|
|
|
result += 32;
|
|
|
|
}
|
|
|
|
while(size & ~31UL) {
|
|
|
|
if(~(tmp = *(p++)))
|
|
|
|
goto found_middle;
|
|
|
|
result += 32;
|
|
|
|
size -= 32;
|
|
|
|
}
|
|
|
|
if(!size)
|
|
|
|
return result;
|
|
|
|
tmp = *p;
|
|
|
|
|
|
|
|
found_first:
|
|
|
|
/* tmp is little endian, so we would have to swab the shift,
|
|
|
|
* see above. But then we have to swab tmp below for ffz, so
|
|
|
|
* we might as well do this here.
|
|
|
|
*/
|
|
|
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
|
|
found_middle:
|
|
|
|
return result + ffz(__swab32(tmp));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
|
|
|
({ \
|
|
|
|
int ret; \
|
|
|
|
spin_lock(lock); \
|
|
|
|
ret = ext2_set_bit((nr), (addr)); \
|
|
|
|
spin_unlock(lock); \
|
|
|
|
ret; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
|
|
|
({ \
|
|
|
|
int ret; \
|
|
|
|
spin_lock(lock); \
|
|
|
|
ret = ext2_clear_bit((nr), (addr)); \
|
|
|
|
spin_unlock(lock); \
|
|
|
|
ret; \
|
|
|
|
})
|
|
|
|
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
|
|
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
|
|
|
|
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
|
|
|
|
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
|
|
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
#endif /* _ASM_M32R_BITOPS_H */
|