original_kernel/mm/mprotect.c

304 lines
7.2 KiB
C
Raw Normal View History

/*
* mm/mprotect.c
*
* (C) Copyright 1994 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*
* Address space accounting code <alan@redhat.com>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/mempolicy.h>
#include <linux/personality.h>
#include <linux/syscalls.h>
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
#include <linux/swap.h>
#include <linux/swapops.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
static void change_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot)
{
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
pte_t *pte, oldpte;
spinlock_t *ptl;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
do {
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
/* Avoid an SMP race with hardware updated dirty/clean
* bits by wiping the pte and then setting the new pte
* into place.
*/
ptent = pte_modify(ptep_get_and_clear(mm, addr, pte), newprot);
set_pte_at(mm, addr, pte, ptent);
lazy_mmu_prot_update(ptent);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
#ifdef CONFIG_MIGRATION
} else if (!pte_file(oldpte)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
if (is_write_migration_entry(entry)) {
/*
* A protection check is difficult so
* just be safe and disable write
*/
make_migration_entry_read(&entry);
set_pte_at(mm, addr, pte,
swp_entry_to_pte(entry));
}
#endif
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(pte - 1, ptl);
}
static inline void change_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end, pgprot_t newprot)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
change_pte_range(mm, pmd, addr, next, newprot);
} while (pmd++, addr = next, addr != end);
}
static inline void change_pud_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end, pgprot_t newprot)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
change_pmd_range(mm, pud, addr, next, newprot);
} while (pud++, addr = next, addr != end);
}
static void change_protection(struct vm_area_struct *vma,
unsigned long addr, unsigned long end, pgprot_t newprot)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
unsigned long next;
unsigned long start = addr;
BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
change_pud_range(mm, pgd, addr, next, newprot);
} while (pgd++, addr = next, addr != end);
flush_tlb_range(vma, start, end);
}
static int
mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
unsigned long start, unsigned long end, unsigned long newflags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long oldflags = vma->vm_flags;
long nrpages = (end - start) >> PAGE_SHIFT;
unsigned long charged = 0;
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:43 +08:00
unsigned int mask;
pgprot_t newprot;
pgoff_t pgoff;
int error;
if (newflags == oldflags) {
*pprev = vma;
return 0;
}
/*
* If we make a private mapping writable we increase our commit;
* but (without finer accounting) cannot reduce our commit if we
* make it unwritable again.
*
* FIXME? We haven't defined a VM_NORESERVE flag, so mprotecting
* a MAP_NORESERVE private mapping to writable will now reserve.
*/
if (newflags & VM_WRITE) {
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:50 +08:00
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_SHARED))) {
charged = nrpages;
if (security_vm_enough_memory(charged))
return -ENOMEM;
newflags |= VM_ACCOUNT;
}
}
/*
* First try to merge with previous and/or next vma.
*/
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*pprev = vma_merge(mm, *pprev, start, end, newflags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
if (*pprev) {
vma = *pprev;
goto success;
}
*pprev = vma;
if (start != vma->vm_start) {
error = split_vma(mm, vma, start, 1);
if (error)
goto fail;
}
if (end != vma->vm_end) {
error = split_vma(mm, vma, end, 0);
if (error)
goto fail;
}
success:
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:43 +08:00
/* Don't make the VMA automatically writable if it's shared, but the
* backer wishes to know when pages are first written to */
mask = VM_READ|VM_WRITE|VM_EXEC|VM_SHARED;
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
mask &= ~VM_SHARED;
newprot = protection_map[newflags & mask];
/*
* vm_flags and vm_page_prot are protected by the mmap_sem
* held in write mode.
*/
vma->vm_flags = newflags;
vma->vm_page_prot = newprot;
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:50 +08:00
if (is_vm_hugetlb_page(vma))
hugetlb_change_protection(vma, start, end, newprot);
else
change_protection(vma, start, end, newprot);
vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
vm_stat_account(mm, newflags, vma->vm_file, nrpages);
return 0;
fail:
vm_unacct_memory(charged);
return error;
}
asmlinkage long
sys_mprotect(unsigned long start, size_t len, unsigned long prot)
{
unsigned long vm_flags, nstart, end, tmp, reqprot;
struct vm_area_struct *vma, *prev;
int error = -EINVAL;
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
return -EINVAL;
if (start & ~PAGE_MASK)
return -EINVAL;
if (!len)
return 0;
len = PAGE_ALIGN(len);
end = start + len;
if (end <= start)
return -ENOMEM;
if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM))
return -EINVAL;
reqprot = prot;
/*
* Does the application expect PROT_READ to imply PROT_EXEC:
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
prot |= PROT_EXEC;
vm_flags = calc_vm_prot_bits(prot);
down_write(&current->mm->mmap_sem);
vma = find_vma_prev(current->mm, start, &prev);
error = -ENOMEM;
if (!vma)
goto out;
if (unlikely(grows & PROT_GROWSDOWN)) {
if (vma->vm_start >= end)
goto out;
start = vma->vm_start;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto out;
}
else {
if (vma->vm_start > start)
goto out;
if (unlikely(grows & PROT_GROWSUP)) {
end = vma->vm_end;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSUP))
goto out;
}
}
if (start > vma->vm_start)
prev = vma;
for (nstart = start ; ; ) {
unsigned long newflags;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
newflags = vm_flags | (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
/* newflags >> 4 shift VM_MAY% in place of VM_% */
if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) {
error = -EACCES;
goto out;
}
error = security_file_mprotect(vma, reqprot, prot);
if (error)
goto out;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
goto out;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
goto out;
}
}
out:
up_write(&current->mm->mmap_sem);
return error;
}