original_kernel/arch/cris/arch-v32/drivers/pci/dma.c

150 lines
3.6 KiB
C
Raw Normal View History

/*
* Dynamic DMA mapping support.
*
* On cris there is no hardware dynamic DMA address translation,
* so consistent alloc/free are merely page allocation/freeing.
* The rest of the dynamic DMA mapping interface is implemented
* in asm/pci.h.
*
* Borrowed from i386.
*/
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <asm/io.h>
struct dma_coherent_mem {
void *virt_base;
u32 device_base;
int size;
int flags;
unsigned long *bitmap;
};
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
void *ret;
struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
int order = get_order(size);
/* ignore region specifiers */
gfp &= ~(__GFP_DMA | __GFP_HIGHMEM);
if (mem) {
int page = bitmap_find_free_region(mem->bitmap, mem->size,
order);
if (page >= 0) {
*dma_handle = mem->device_base + (page << PAGE_SHIFT);
ret = mem->virt_base + (page << PAGE_SHIFT);
memset(ret, 0, size);
return ret;
}
if (mem->flags & DMA_MEMORY_EXCLUSIVE)
return NULL;
}
if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
gfp |= GFP_DMA;
ret = (void *)__get_free_pages(gfp, order);
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = virt_to_phys(ret);
}
return ret;
}
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
int order = get_order(size);
if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
bitmap_release_region(mem->bitmap, page, order);
} else
free_pages((unsigned long)vaddr, order);
}
int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
dma_addr_t device_addr, size_t size, int flags)
{
void __iomem *mem_base;
int pages = size >> PAGE_SHIFT;
int bitmap_size = (pages + 31)/32;
if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
goto out;
if (!size)
goto out;
if (dev->dma_mem)
goto out;
/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
mem_base = ioremap(bus_addr, size);
if (!mem_base)
goto out;
dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
if (!dev->dma_mem)
goto out;
memset(dev->dma_mem, 0, sizeof(struct dma_coherent_mem));
dev->dma_mem->bitmap = kmalloc(bitmap_size, GFP_KERNEL);
if (!dev->dma_mem->bitmap)
goto free1_out;
memset(dev->dma_mem->bitmap, 0, bitmap_size);
dev->dma_mem->virt_base = mem_base;
dev->dma_mem->device_base = device_addr;
dev->dma_mem->size = pages;
dev->dma_mem->flags = flags;
if (flags & DMA_MEMORY_MAP)
return DMA_MEMORY_MAP;
return DMA_MEMORY_IO;
free1_out:
kfree(dev->dma_mem->bitmap);
out:
return 0;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);
void dma_release_declared_memory(struct device *dev)
{
struct dma_coherent_mem *mem = dev->dma_mem;
if(!mem)
return;
dev->dma_mem = NULL;
iounmap(mem->virt_base);
kfree(mem->bitmap);
kfree(mem);
}
EXPORT_SYMBOL(dma_release_declared_memory);
void *dma_mark_declared_memory_occupied(struct device *dev,
dma_addr_t device_addr, size_t size)
{
struct dma_coherent_mem *mem = dev->dma_mem;
int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
int pos, err;
if (!mem)
return ERR_PTR(-EINVAL);
pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
if (err != 0)
return ERR_PTR(err);
return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);