original_kernel/arch/arm/oprofile/op_model_xscale.c

444 lines
10 KiB
C
Raw Normal View History

/**
* @file op_model_xscale.c
* XScale Performance Monitor Driver
*
* @remark Copyright 2000-2004 Deepak Saxena <dsaxena@mvista.com>
* @remark Copyright 2000-2004 MontaVista Software Inc
* @remark Copyright 2004 Dave Jiang <dave.jiang@intel.com>
* @remark Copyright 2004 Intel Corporation
* @remark Copyright 2004 Zwane Mwaikambo <zwane@arm.linux.org.uk>
* @remark Copyright 2004 OProfile Authors
*
* @remark Read the file COPYING
*
* @author Zwane Mwaikambo
*/
/* #define DEBUG */
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/oprofile.h>
#include <linux/interrupt.h>
#include <asm/irq.h>
#include <asm/system.h>
#include "op_counter.h"
#include "op_arm_model.h"
#define PMU_ENABLE 0x001 /* Enable counters */
#define PMN_RESET 0x002 /* Reset event counters */
#define CCNT_RESET 0x004 /* Reset clock counter */
#define PMU_RESET (CCNT_RESET | PMN_RESET)
#define PMU_CNT64 0x008 /* Make CCNT count every 64th cycle */
/* TODO do runtime detection */
#ifdef CONFIG_ARCH_IOP310
#define XSCALE_PMU_IRQ IRQ_XS80200_PMU
#endif
#ifdef CONFIG_ARCH_IOP321
#define XSCALE_PMU_IRQ IRQ_IOP321_CORE_PMU
#endif
#ifdef CONFIG_ARCH_IOP331
#define XSCALE_PMU_IRQ IRQ_IOP331_CORE_PMU
#endif
#ifdef CONFIG_ARCH_PXA
#define XSCALE_PMU_IRQ IRQ_PMU
#endif
/*
* Different types of events that can be counted by the XScale PMU
* as used by Oprofile userspace. Here primarily for documentation
* purposes.
*/
#define EVT_ICACHE_MISS 0x00
#define EVT_ICACHE_NO_DELIVER 0x01
#define EVT_DATA_STALL 0x02
#define EVT_ITLB_MISS 0x03
#define EVT_DTLB_MISS 0x04
#define EVT_BRANCH 0x05
#define EVT_BRANCH_MISS 0x06
#define EVT_INSTRUCTION 0x07
#define EVT_DCACHE_FULL_STALL 0x08
#define EVT_DCACHE_FULL_STALL_CONTIG 0x09
#define EVT_DCACHE_ACCESS 0x0A
#define EVT_DCACHE_MISS 0x0B
#define EVT_DCACE_WRITE_BACK 0x0C
#define EVT_PC_CHANGED 0x0D
#define EVT_BCU_REQUEST 0x10
#define EVT_BCU_FULL 0x11
#define EVT_BCU_DRAIN 0x12
#define EVT_BCU_ECC_NO_ELOG 0x14
#define EVT_BCU_1_BIT_ERR 0x15
#define EVT_RMW 0x16
/* EVT_CCNT is not hardware defined */
#define EVT_CCNT 0xFE
#define EVT_UNUSED 0xFF
struct pmu_counter {
volatile unsigned long ovf;
unsigned long reset_counter;
};
enum { CCNT, PMN0, PMN1, PMN2, PMN3, MAX_COUNTERS };
static struct pmu_counter results[MAX_COUNTERS];
/*
* There are two versions of the PMU in current XScale processors
* with differing register layouts and number of performance counters.
* e.g. IOP321 is xsc1 whilst IOP331 is xsc2.
* We detect which register layout to use in xscale_detect_pmu()
*/
enum { PMU_XSC1, PMU_XSC2 };
struct pmu_type {
int id;
char *name;
int num_counters;
unsigned int int_enable;
unsigned int cnt_ovf[MAX_COUNTERS];
unsigned int int_mask[MAX_COUNTERS];
};
static struct pmu_type pmu_parms[] = {
{
.id = PMU_XSC1,
.name = "arm/xscale1",
.num_counters = 3,
.int_mask = { [PMN0] = 0x10, [PMN1] = 0x20,
[CCNT] = 0x40 },
.cnt_ovf = { [CCNT] = 0x400, [PMN0] = 0x100,
[PMN1] = 0x200},
},
{
.id = PMU_XSC2,
.name = "arm/xscale2",
.num_counters = 5,
.int_mask = { [CCNT] = 0x01, [PMN0] = 0x02,
[PMN1] = 0x04, [PMN2] = 0x08,
[PMN3] = 0x10 },
.cnt_ovf = { [CCNT] = 0x01, [PMN0] = 0x02,
[PMN1] = 0x04, [PMN2] = 0x08,
[PMN3] = 0x10 },
},
};
static struct pmu_type *pmu;
static void write_pmnc(u32 val)
{
if (pmu->id == PMU_XSC1) {
/* upper 4bits and 7, 11 are write-as-0 */
val &= 0xffff77f;
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c0, 0" : : "r" (val));
} else {
/* bits 4-23 are write-as-0, 24-31 are write ignored */
val &= 0xf;
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c1, 0" : : "r" (val));
}
}
static u32 read_pmnc(void)
{
u32 val;
if (pmu->id == PMU_XSC1)
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c0, 0" : "=r" (val));
else {
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c1, 0" : "=r" (val));
/* bits 1-2 and 4-23 are read-unpredictable */
val &= 0xff000009;
}
return val;
}
static u32 __xsc1_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
break;
}
return val;
}
static u32 __xsc2_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c1, 0" : "=r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c2, 0" : "=r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c2, 0" : "=r" (val));
break;
case PMN2:
__asm__ __volatile__ ("mrc p14, 0, %0, c2, c2, 0" : "=r" (val));
break;
case PMN3:
__asm__ __volatile__ ("mrc p14, 0, %0, c3, c2, 0" : "=r" (val));
break;
}
return val;
}
static u32 read_counter(int counter)
{
u32 val;
if (pmu->id == PMU_XSC1)
val = __xsc1_read_counter(counter);
else
val = __xsc2_read_counter(counter);
return val;
}
static void __xsc1_write_counter(int counter, u32 val)
{
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c0, 0" : : "r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mcr p14, 0, %0, c2, c0, 0" : : "r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mcr p14, 0, %0, c3, c0, 0" : : "r" (val));
break;
}
}
static void __xsc2_write_counter(int counter, u32 val)
{
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c1, 0" : : "r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c2, 0" : : "r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c2, 0" : : "r" (val));
break;
case PMN2:
__asm__ __volatile__ ("mcr p14, 0, %0, c2, c2, 0" : : "r" (val));
break;
case PMN3:
__asm__ __volatile__ ("mcr p14, 0, %0, c3, c2, 0" : : "r" (val));
break;
}
}
static void write_counter(int counter, u32 val)
{
if (pmu->id == PMU_XSC1)
__xsc1_write_counter(counter, val);
else
__xsc2_write_counter(counter, val);
}
static int xscale_setup_ctrs(void)
{
u32 evtsel, pmnc;
int i;
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (counter_config[i].enabled)
continue;
counter_config[i].event = EVT_UNUSED;
}
switch (pmu->id) {
case PMU_XSC1:
pmnc = (counter_config[PMN1].event << 20) | (counter_config[PMN0].event << 12);
pr_debug("xscale_setup_ctrs: pmnc: %#08x\n", pmnc);
write_pmnc(pmnc);
break;
case PMU_XSC2:
evtsel = counter_config[PMN0].event | (counter_config[PMN1].event << 8) |
(counter_config[PMN2].event << 16) | (counter_config[PMN3].event << 24);
pr_debug("xscale_setup_ctrs: evtsel %#08x\n", evtsel);
__asm__ __volatile__ ("mcr p14, 0, %0, c8, c1, 0" : : "r" (evtsel));
break;
}
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (counter_config[i].event == EVT_UNUSED) {
counter_config[i].event = 0;
pmu->int_enable &= ~pmu->int_mask[i];
continue;
}
results[i].reset_counter = counter_config[i].count;
write_counter(i, -(u32)counter_config[i].count);
pmu->int_enable |= pmu->int_mask[i];
pr_debug("xscale_setup_ctrs: counter%d %#08x from %#08lx\n", i,
read_counter(i), counter_config[i].count);
}
return 0;
}
static void inline __xsc1_check_ctrs(void)
{
int i;
u32 pmnc = read_pmnc();
/* NOTE: there's an A stepping errata that states if an overflow */
/* bit already exists and another occurs, the previous */
/* Overflow bit gets cleared. There's no workaround. */
/* Fixed in B stepping or later */
/* Write the value back to clear the overflow flags. Overflow */
/* flags remain in pmnc for use below */
write_pmnc(pmnc & ~PMU_ENABLE);
for (i = CCNT; i <= PMN1; i++) {
if (!(pmu->int_mask[i] & pmu->int_enable))
continue;
if (pmnc & pmu->cnt_ovf[i])
results[i].ovf++;
}
}
static void inline __xsc2_check_ctrs(void)
{
int i;
u32 flag = 0, pmnc = read_pmnc();
pmnc &= ~PMU_ENABLE;
write_pmnc(pmnc);
/* read overflow flag register */
__asm__ __volatile__ ("mrc p14, 0, %0, c5, c1, 0" : "=r" (flag));
for (i = CCNT; i <= PMN3; i++) {
if (!(pmu->int_mask[i] & pmu->int_enable))
continue;
if (flag & pmu->cnt_ovf[i])
results[i].ovf++;
}
/* writeback clears overflow bits */
__asm__ __volatile__ ("mcr p14, 0, %0, c5, c1, 0" : : "r" (flag));
}
static irqreturn_t xscale_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
{
int i;
u32 pmnc;
if (pmu->id == PMU_XSC1)
__xsc1_check_ctrs();
else
__xsc2_check_ctrs();
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (!results[i].ovf)
continue;
write_counter(i, -(u32)results[i].reset_counter);
oprofile_add_sample(regs, i);
results[i].ovf--;
}
pmnc = read_pmnc() | PMU_ENABLE;
write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void xscale_pmu_stop(void)
{
u32 pmnc = read_pmnc();
pmnc &= ~PMU_ENABLE;
write_pmnc(pmnc);
free_irq(XSCALE_PMU_IRQ, results);
}
static int xscale_pmu_start(void)
{
int ret;
u32 pmnc = read_pmnc();
ret = request_irq(XSCALE_PMU_IRQ, xscale_pmu_interrupt, SA_INTERRUPT,
"XScale PMU", (void *)results);
if (ret < 0) {
printk(KERN_ERR "oprofile: unable to request IRQ%d for XScale PMU\n",
XSCALE_PMU_IRQ);
return ret;
}
if (pmu->id == PMU_XSC1)
pmnc |= pmu->int_enable;
else {
__asm__ __volatile__ ("mcr p14, 0, %0, c4, c1, 0" : : "r" (pmu->int_enable));
pmnc &= ~PMU_CNT64;
}
pmnc |= PMU_ENABLE;
write_pmnc(pmnc);
pr_debug("xscale_pmu_start: pmnc: %#08x mask: %08x\n", pmnc, pmu->int_enable);
return 0;
}
static int xscale_detect_pmu(void)
{
int ret = 0;
u32 id;
id = (read_cpuid(CPUID_ID) >> 13) & 0x7;
switch (id) {
case 1:
pmu = &pmu_parms[PMU_XSC1];
break;
case 2:
pmu = &pmu_parms[PMU_XSC2];
break;
default:
ret = -ENODEV;
break;
}
if (!ret) {
op_xscale_spec.name = pmu->name;
op_xscale_spec.num_counters = pmu->num_counters;
pr_debug("xscale_detect_pmu: detected %s PMU\n", pmu->name);
}
return ret;
}
struct op_arm_model_spec op_xscale_spec = {
.init = xscale_detect_pmu,
.setup_ctrs = xscale_setup_ctrs,
.start = xscale_pmu_start,
.stop = xscale_pmu_stop,
};