original_kernel/mm/migrate.c

1152 lines
26 KiB
C
Raw Normal View History

/*
* Memory Migration functionality - linux/mm/migration.c
*
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
*
* Page migration was first developed in the context of the memory hotplug
* project. The main authors of the migration code are:
*
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
* Hirokazu Takahashi <taka@valinux.co.jp>
* Dave Hansen <haveblue@us.ibm.com>
* Christoph Lameter
*/
#include <linux/migrate.h>
#include <linux/module.h>
#include <linux/swap.h>
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/nsproxy.h>
#include <linux/pagevec.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/writeback.h>
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
#include <linux/security.h>
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
#include <linux/memcontrol.h>
#include <linux/syscalls.h>
#include "internal.h"
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
/*
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
* migrate_prep() needs to be called before we start compiling a list of pages
* to be migrated using isolate_lru_page().
*/
int migrate_prep(void)
{
/*
* Clear the LRU lists so pages can be isolated.
* Note that pages may be moved off the LRU after we have
* drained them. Those pages will fail to migrate like other
* pages that may be busy.
*/
lru_add_drain_all();
return 0;
}
/*
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
* Add isolated pages on the list back to the LRU under page lock
* to avoid leaking evictable pages back onto unevictable list.
*
* returns the number of pages put back.
*/
int putback_lru_pages(struct list_head *l)
{
struct page *page;
struct page *page2;
int count = 0;
list_for_each_entry_safe(page, page2, l, lru) {
list_del(&page->lru);
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
putback_lru_page(page);
count++;
}
return count;
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
/*
* Restore a potential migration pte to a working pte entry
*/
static void remove_migration_pte(struct vm_area_struct *vma,
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
struct page *old, struct page *new)
{
struct mm_struct *mm = vma->vm_mm;
swp_entry_t entry;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
unsigned long addr = page_address_in_vma(new, vma);
if (addr == -EFAULT)
return;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
pgd = pgd_offset(mm, addr);
if (!pgd_present(*pgd))
return;
pud = pud_offset(pgd, addr);
if (!pud_present(*pud))
return;
pmd = pmd_offset(pud, addr);
if (!pmd_present(*pmd))
return;
ptep = pte_offset_map(pmd, addr);
if (!is_swap_pte(*ptep)) {
pte_unmap(ptep);
return;
}
ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
pte = *ptep;
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
goto out;
/*
* Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
* Failure is not an option here: we're now expected to remove every
* migration pte, and will cause crashes otherwise. Normally this
* is not an issue: mem_cgroup_prepare_migration bumped up the old
* page_cgroup count for safety, that's now attached to the new page,
* so this charge should just be another incrementation of the count,
* to keep in balance with rmap.c's mem_cgroup_uncharging. But if
* there's been a force_empty, those reference counts may no longer
* be reliable, and this charge can actually fail: oh well, we don't
* make the situation any worse by proceeding as if it had succeeded.
*/
mem_cgroup_charge(new, mm, GFP_ATOMIC);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
get_page(new);
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
if (is_write_migration_entry(entry))
pte = pte_mkwrite(pte);
flush_cache_page(vma, addr, pte_pfn(pte));
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
set_pte_at(mm, addr, ptep, pte);
if (PageAnon(new))
page_add_anon_rmap(new, vma, addr);
else
page_add_file_rmap(new);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, addr, pte);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
out:
pte_unmap_unlock(ptep, ptl);
}
/*
* Note that remove_file_migration_ptes will only work on regular mappings,
* Nonlinear mappings do not use migration entries.
*/
static void remove_file_migration_ptes(struct page *old, struct page *new)
{
struct vm_area_struct *vma;
struct address_space *mapping = page_mapping(new);
struct prio_tree_iter iter;
pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
if (!mapping)
return;
spin_lock(&mapping->i_mmap_lock);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
remove_migration_pte(vma, old, new);
spin_unlock(&mapping->i_mmap_lock);
}
/*
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
* Must hold mmap_sem lock on at least one of the vmas containing
* the page so that the anon_vma cannot vanish.
*/
static void remove_anon_migration_ptes(struct page *old, struct page *new)
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
{
struct anon_vma *anon_vma;
struct vm_area_struct *vma;
unsigned long mapping;
mapping = (unsigned long)new->mapping;
if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
return;
/*
* We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
*/
anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
spin_lock(&anon_vma->lock);
list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
remove_migration_pte(vma, old, new);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
spin_unlock(&anon_vma->lock);
}
/*
* Get rid of all migration entries and replace them by
* references to the indicated page.
*/
static void remove_migration_ptes(struct page *old, struct page *new)
{
if (PageAnon(new))
remove_anon_migration_ptes(old, new);
else
remove_file_migration_ptes(old, new);
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
/*
* Something used the pte of a page under migration. We need to
* get to the page and wait until migration is finished.
* When we return from this function the fault will be retried.
*
* This function is called from do_swap_page().
*/
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address)
{
pte_t *ptep, pte;
spinlock_t *ptl;
swp_entry_t entry;
struct page *page;
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto out;
page = migration_entry_to_page(entry);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
/*
* Once radix-tree replacement of page migration started, page_count
* *must* be zero. And, we don't want to call wait_on_page_locked()
* against a page without get_page().
* So, we use get_page_unless_zero(), here. Even failed, page fault
* will occur again.
*/
if (!get_page_unless_zero(page))
goto out;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
pte_unmap_unlock(ptep, ptl);
wait_on_page_locked(page);
put_page(page);
return;
out:
pte_unmap_unlock(ptep, ptl);
}
/*
* Replace the page in the mapping.
*
* The number of remaining references must be:
* 1 for anonymous pages without a mapping
* 2 for pages with a mapping
* 3 for pages with a mapping and PagePrivate set.
*/
static int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
int expected_count;
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
void **pslot;
if (!mapping) {
/* Anonymous page without mapping */
if (page_count(page) != 1)
return -EAGAIN;
return 0;
}
spin_lock_irq(&mapping->tree_lock);
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(page));
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
expected_count = 2 + !!PagePrivate(page);
if (page_count(page) != expected_count ||
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
(struct page *)radix_tree_deref_slot(pslot) != page) {
spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
if (!page_freeze_refs(page, expected_count)) {
spin_unlock_irq(&mapping->tree_lock);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
return -EAGAIN;
}
/*
* Now we know that no one else is looking at the page.
*/
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
get_page(newpage); /* add cache reference */
#ifdef CONFIG_SWAP
if (PageSwapCache(page)) {
SetPageSwapCache(newpage);
set_page_private(newpage, page_private(page));
}
#endif
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
radix_tree_replace_slot(pslot, newpage);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
page_unfreeze_refs(page, expected_count);
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
/*
* Drop cache reference from old page.
* We know this isn't the last reference.
*/
__put_page(page);
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
/*
* If moved to a different zone then also account
* the page for that zone. Other VM counters will be
* taken care of when we establish references to the
* new page and drop references to the old page.
*
* Note that anonymous pages are accounted for
* via NR_FILE_PAGES and NR_ANON_PAGES if they
* are mapped to swap space.
*/
__dec_zone_page_state(page, NR_FILE_PAGES);
__inc_zone_page_state(newpage, NR_FILE_PAGES);
spin_unlock_irq(&mapping->tree_lock);
return 0;
}
/*
* Copy the page to its new location
*/
static void migrate_page_copy(struct page *newpage, struct page *page)
{
int anon;
copy_highpage(newpage, page);
if (PageError(page))
SetPageError(newpage);
if (PageReferenced(page))
SetPageReferenced(newpage);
if (PageUptodate(page))
SetPageUptodate(newpage);
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
if (TestClearPageActive(page)) {
VM_BUG_ON(PageUnevictable(page));
SetPageActive(newpage);
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
} else
unevictable_migrate_page(newpage, page);
if (PageChecked(page))
SetPageChecked(newpage);
if (PageMappedToDisk(page))
SetPageMappedToDisk(newpage);
if (PageDirty(page)) {
clear_page_dirty_for_io(page);
2008-04-30 15:55:16 +08:00
/*
* Want to mark the page and the radix tree as dirty, and
* redo the accounting that clear_page_dirty_for_io undid,
* but we can't use set_page_dirty because that function
* is actually a signal that all of the page has become dirty.
* Wheras only part of our page may be dirty.
*/
__set_page_dirty_nobuffers(newpage);
}
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
mlock_migrate_page(newpage, page);
#ifdef CONFIG_SWAP
ClearPageSwapCache(page);
#endif
ClearPagePrivate(page);
set_page_private(page, 0);
/* page->mapping contains a flag for PageAnon() */
anon = PageAnon(page);
page->mapping = NULL;
if (!anon) /* This page was removed from radix-tree. */
mem_cgroup_uncharge_cache_page(page);
/*
* If any waiters have accumulated on the new page then
* wake them up.
*/
if (PageWriteback(newpage))
end_page_writeback(newpage);
}
/************************************************************
* Migration functions
***********************************************************/
/* Always fail migration. Used for mappings that are not movable */
int fail_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);
/*
* Common logic to directly migrate a single page suitable for
* pages that do not use PagePrivate.
*
* Pages are locked upon entry and exit.
*/
int migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
int rc;
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
rc = migrate_page_move_mapping(mapping, newpage, page);
if (rc)
return rc;
migrate_page_copy(newpage, page);
return 0;
}
EXPORT_SYMBOL(migrate_page);
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-10-01 02:45:40 +08:00
#ifdef CONFIG_BLOCK
/*
* Migration function for pages with buffers. This function can only be used
* if the underlying filesystem guarantees that no other references to "page"
* exist.
*/
int buffer_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
struct buffer_head *bh, *head;
int rc;
if (!page_has_buffers(page))
return migrate_page(mapping, newpage, page);
head = page_buffers(page);
rc = migrate_page_move_mapping(mapping, newpage, page);
if (rc)
return rc;
bh = head;
do {
get_bh(bh);
lock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
ClearPagePrivate(page);
set_page_private(newpage, page_private(page));
set_page_private(page, 0);
put_page(page);
get_page(newpage);
bh = head;
do {
set_bh_page(bh, newpage, bh_offset(bh));
bh = bh->b_this_page;
} while (bh != head);
SetPagePrivate(newpage);
migrate_page_copy(newpage, page);
bh = head;
do {
unlock_buffer(bh);
put_bh(bh);
bh = bh->b_this_page;
} while (bh != head);
return 0;
}
EXPORT_SYMBOL(buffer_migrate_page);
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-10-01 02:45:40 +08:00
#endif
/*
* Writeback a page to clean the dirty state
*/
static int writeout(struct address_space *mapping, struct page *page)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
.range_start = 0,
.range_end = LLONG_MAX,
.nonblocking = 1,
.for_reclaim = 1
};
int rc;
if (!mapping->a_ops->writepage)
/* No write method for the address space */
return -EINVAL;
if (!clear_page_dirty_for_io(page))
/* Someone else already triggered a write */
return -EAGAIN;
/*
* A dirty page may imply that the underlying filesystem has
* the page on some queue. So the page must be clean for
* migration. Writeout may mean we loose the lock and the
* page state is no longer what we checked for earlier.
* At this point we know that the migration attempt cannot
* be successful.
*/
remove_migration_ptes(page, page);
rc = mapping->a_ops->writepage(page, &wbc);
if (rc != AOP_WRITEPAGE_ACTIVATE)
/* unlocked. Relock */
lock_page(page);
return (rc < 0) ? -EIO : -EAGAIN;
}
/*
* Default handling if a filesystem does not provide a migration function.
*/
static int fallback_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
if (PageDirty(page))
return writeout(mapping, page);
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (PagePrivate(page) &&
!try_to_release_page(page, GFP_KERNEL))
return -EAGAIN;
return migrate_page(mapping, newpage, page);
}
/*
* Move a page to a newly allocated page
* The page is locked and all ptes have been successfully removed.
*
* The new page will have replaced the old page if this function
* is successful.
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
*
* Return value:
* < 0 - error code
* == 0 - success
*/
static int move_to_new_page(struct page *newpage, struct page *page)
{
struct address_space *mapping;
int rc;
/*
* Block others from accessing the page when we get around to
* establishing additional references. We are the only one
* holding a reference to the new page at this point.
*/
if (!trylock_page(newpage))
BUG();
/* Prepare mapping for the new page.*/
newpage->index = page->index;
newpage->mapping = page->mapping;
if (PageSwapBacked(page))
SetPageSwapBacked(newpage);
mapping = page_mapping(page);
if (!mapping)
rc = migrate_page(mapping, newpage, page);
else if (mapping->a_ops->migratepage)
/*
* Most pages have a mapping and most filesystems
* should provide a migration function. Anonymous
* pages are part of swap space which also has its
* own migration function. This is the most common
* path for page migration.
*/
rc = mapping->a_ops->migratepage(mapping,
newpage, page);
else
rc = fallback_migrate_page(mapping, newpage, page);
bugfix for memory cgroup controller: migration under memory controller fix While using memory control cgroup, page-migration under it works as following. == 1. uncharge all refs at try to unmap. 2. charge regs again remove_migration_ptes() == This is simple but has following problems. == The page is uncharged and charged back again if *mapped*. - This means that cgroup before migration can be different from one after migration - If page is not mapped but charged as page cache, charge is just ignored (because not mapped, it will not be uncharged before migration) This is memory leak. == This patch tries to keep memory cgroup at page migration by increasing one refcnt during it. 3 functions are added. mem_cgroup_prepare_migration() --- increase refcnt of page->page_cgroup mem_cgroup_end_migration() --- decrease refcnt of page->page_cgroup mem_cgroup_page_migration() --- copy page->page_cgroup from old page to new page. During migration - old page is under PG_locked. - new page is under PG_locked, too. - both old page and new page is not on LRU. These 3 facts guarantee that page_cgroup() migration has no race. Tested and worked well in x86_64/fake-NUMA box. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:14:10 +08:00
if (!rc) {
remove_migration_ptes(page, newpage);
bugfix for memory cgroup controller: migration under memory controller fix While using memory control cgroup, page-migration under it works as following. == 1. uncharge all refs at try to unmap. 2. charge regs again remove_migration_ptes() == This is simple but has following problems. == The page is uncharged and charged back again if *mapped*. - This means that cgroup before migration can be different from one after migration - If page is not mapped but charged as page cache, charge is just ignored (because not mapped, it will not be uncharged before migration) This is memory leak. == This patch tries to keep memory cgroup at page migration by increasing one refcnt during it. 3 functions are added. mem_cgroup_prepare_migration() --- increase refcnt of page->page_cgroup mem_cgroup_end_migration() --- decrease refcnt of page->page_cgroup mem_cgroup_page_migration() --- copy page->page_cgroup from old page to new page. During migration - old page is under PG_locked. - new page is under PG_locked, too. - both old page and new page is not on LRU. These 3 facts guarantee that page_cgroup() migration has no race. Tested and worked well in x86_64/fake-NUMA box. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:14:10 +08:00
} else
newpage->mapping = NULL;
unlock_page(newpage);
return rc;
}
/*
* Obtain the lock on page, remove all ptes and migrate the page
* to the newly allocated page in newpage.
*/
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
struct page *page, int force)
{
int rc = 0;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
int *result = NULL;
struct page *newpage = get_new_page(page, private, &result);
int rcu_locked = 0;
bugfix for memory cgroup controller: migration under memory controller fix While using memory control cgroup, page-migration under it works as following. == 1. uncharge all refs at try to unmap. 2. charge regs again remove_migration_ptes() == This is simple but has following problems. == The page is uncharged and charged back again if *mapped*. - This means that cgroup before migration can be different from one after migration - If page is not mapped but charged as page cache, charge is just ignored (because not mapped, it will not be uncharged before migration) This is memory leak. == This patch tries to keep memory cgroup at page migration by increasing one refcnt during it. 3 functions are added. mem_cgroup_prepare_migration() --- increase refcnt of page->page_cgroup mem_cgroup_end_migration() --- decrease refcnt of page->page_cgroup mem_cgroup_page_migration() --- copy page->page_cgroup from old page to new page. During migration - old page is under PG_locked. - new page is under PG_locked, too. - both old page and new page is not on LRU. These 3 facts guarantee that page_cgroup() migration has no race. Tested and worked well in x86_64/fake-NUMA box. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:14:10 +08:00
int charge = 0;
if (!newpage)
return -ENOMEM;
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
if (page_count(page) == 1) {
/* page was freed from under us. So we are done. */
goto move_newpage;
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
}
charge = mem_cgroup_prepare_migration(page, newpage);
if (charge == -ENOMEM) {
rc = -ENOMEM;
goto move_newpage;
}
/* prepare cgroup just returns 0 or -ENOMEM */
BUG_ON(charge);
rc = -EAGAIN;
if (!trylock_page(page)) {
if (!force)
goto move_newpage;
lock_page(page);
}
if (PageWriteback(page)) {
if (!force)
goto unlock;
wait_on_page_writeback(page);
}
/*
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
* we cannot notice that anon_vma is freed while we migrates a page.
* This rcu_read_lock() delays freeing anon_vma pointer until the end
* of migration. File cache pages are no problem because of page_lock()
* File Caches may use write_page() or lock_page() in migration, then,
* just care Anon page here.
*/
if (PageAnon(page)) {
rcu_read_lock();
rcu_locked = 1;
}
/*
* Corner case handling:
* 1. When a new swap-cache page is read into, it is added to the LRU
* and treated as swapcache but it has no rmap yet.
* Calling try_to_unmap() against a page->mapping==NULL page will
* trigger a BUG. So handle it here.
* 2. An orphaned page (see truncate_complete_page) might have
* fs-private metadata. The page can be picked up due to memory
* offlining. Everywhere else except page reclaim, the page is
* invisible to the vm, so the page can not be migrated. So try to
* free the metadata, so the page can be freed.
*/
if (!page->mapping) {
if (!PageAnon(page) && PagePrivate(page)) {
/*
* Go direct to try_to_free_buffers() here because
* a) that's what try_to_release_page() would do anyway
* b) we may be under rcu_read_lock() here, so we can't
* use GFP_KERNEL which is what try_to_release_page()
* needs to be effective.
*/
try_to_free_buffers(page);
}
goto rcu_unlock;
}
/* Establish migration ptes or remove ptes */
try_to_unmap(page, 1);
if (!page_mapped(page))
rc = move_to_new_page(newpage, page);
if (rc)
remove_migration_ptes(page, page);
rcu_unlock:
if (rcu_locked)
rcu_read_unlock();
unlock:
unlock_page(page);
if (rc != -EAGAIN) {
/*
* A page that has been migrated has all references
* removed and will be freed. A page that has not been
* migrated will have kepts its references and be
* restored.
*/
list_del(&page->lru);
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
putback_lru_page(page);
}
move_newpage:
if (!charge)
mem_cgroup_end_migration(newpage);
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
/*
* Move the new page to the LRU. If migration was not successful
* then this will free the page.
*/
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
putback_lru_page(newpage);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
if (result) {
if (rc)
*result = rc;
else
*result = page_to_nid(newpage);
}
return rc;
}
/*
* migrate_pages
*
* The function takes one list of pages to migrate and a function
* that determines from the page to be migrated and the private data
* the target of the move and allocates the page.
*
* The function returns after 10 attempts or if no pages
* are movable anymore because to has become empty
* or no retryable pages exist anymore. All pages will be
* returned to the LRU or freed.
*
* Return: Number of pages not migrated or error code.
*/
int migrate_pages(struct list_head *from,
new_page_t get_new_page, unsigned long private)
{
int retry = 1;
int nr_failed = 0;
int pass = 0;
struct page *page;
struct page *page2;
int swapwrite = current->flags & PF_SWAPWRITE;
int rc;
if (!swapwrite)
current->flags |= PF_SWAPWRITE;
for(pass = 0; pass < 10 && retry; pass++) {
retry = 0;
list_for_each_entry_safe(page, page2, from, lru) {
cond_resched();
rc = unmap_and_move(get_new_page, private,
page, pass > 2);
switch(rc) {
case -ENOMEM:
goto out;
case -EAGAIN:
retry++;
break;
case 0:
break;
default:
/* Permanent failure */
nr_failed++;
break;
}
}
}
rc = 0;
out:
if (!swapwrite)
current->flags &= ~PF_SWAPWRITE;
putback_lru_pages(from);
if (rc)
return rc;
return nr_failed + retry;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
#ifdef CONFIG_NUMA
/*
* Move a list of individual pages
*/
struct page_to_node {
unsigned long addr;
struct page *page;
int node;
int status;
};
static struct page *new_page_node(struct page *p, unsigned long private,
int **result)
{
struct page_to_node *pm = (struct page_to_node *)private;
while (pm->node != MAX_NUMNODES && pm->page != p)
pm++;
if (pm->node == MAX_NUMNODES)
return NULL;
*result = &pm->status;
Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated It is often known at allocation time whether a page may be migrated or not. This patch adds a flag called __GFP_MOVABLE and a new mask called GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated using the page migration mechanism or reclaimed by syncing with backing storage and discarding. An API function very similar to alloc_zeroed_user_highpage() is added for __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The flags used by alloc_zeroed_user_highpage() are not changed because it would change the semantics of an existing API. After this patch is applied there are no in-kernel users of alloc_zeroed_user_highpage() so it probably should be marked deprecated if this patch is merged. Note that this patch includes a minor cleanup to the use of __GFP_ZERO in shmem.c to keep all flag modifications to inode->mapping in the shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of Hugh Dickens. Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the concept. Credit to Hugh Dickens for catching issues with shmem swap vector and ramfs allocations. [akpm@linux-foundation.org: build fix] [hugh@veritas.com: __GFP_ZERO cleanup] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 19:03:05 +08:00
return alloc_pages_node(pm->node,
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
}
/*
* Move a set of pages as indicated in the pm array. The addr
* field must be set to the virtual address of the page to be moved
* and the node number must contain a valid target node.
* The pm array ends with node = MAX_NUMNODES.
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
*/
static int do_move_page_to_node_array(struct mm_struct *mm,
struct page_to_node *pm,
int migrate_all)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
{
int err;
struct page_to_node *pp;
LIST_HEAD(pagelist);
migrate_prep();
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
down_read(&mm->mmap_sem);
/*
* Build a list of pages to migrate
*/
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
struct vm_area_struct *vma;
struct page *page;
/*
* A valid page pointer that will not match any of the
* pages that will be moved.
*/
pp->page = ZERO_PAGE(0);
err = -EFAULT;
vma = find_vma(mm, pp->addr);
if (!vma || !vma_migratable(vma))
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
goto set_status;
page = follow_page(vma, pp->addr, FOLL_GET);
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-21 02:18:25 +08:00
err = PTR_ERR(page);
if (IS_ERR(page))
goto set_status;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
err = -ENOENT;
if (!page)
goto set_status;
if (PageReserved(page)) /* Check for zero page */
goto put_and_set;
pp->page = page;
err = page_to_nid(page);
if (err == pp->node)
/*
* Node already in the right place
*/
goto put_and_set;
err = -EACCES;
if (page_mapcount(page) > 1 &&
!migrate_all)
goto put_and_set;
vmscan: move isolate_lru_page() to vmscan.c On large memory systems, the VM can spend way too much time scanning through pages that it cannot (or should not) evict from memory. Not only does it use up CPU time, but it also provokes lock contention and can leave large systems under memory presure in a catatonic state. This patch series improves VM scalability by: 1) putting filesystem backed, swap backed and unevictable pages onto their own LRUs, so the system only scans the pages that it can/should evict from memory 2) switching to two handed clock replacement for the anonymous LRUs, so the number of pages that need to be scanned when the system starts swapping is bound to a reasonable number 3) keeping unevictable pages off the LRU completely, so the VM does not waste CPU time scanning them. ramfs, ramdisk, SHM_LOCKED shared memory segments and mlock()ed VMA pages are keept on the unevictable list. This patch: isolate_lru_page logically belongs to be in vmscan.c than migrate.c. It is tough, because we don't need that function without memory migration so there is a valid argument to have it in migrate.c. However a subsequent patch needs to make use of it in the core mm, so we can happily move it to vmscan.c. Also, make the function a little more generic by not requiring that it adds an isolated page to a given list. Callers can do that. Note that we now have '__isolate_lru_page()', that does something quite different, visible outside of vmscan.c for use with memory controller. Methinks we need to rationalize these names/purposes. --lts [akpm@linux-foundation.org: fix mm/memory_hotplug.c build] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:09 +08:00
err = isolate_lru_page(page);
if (!err)
list_add_tail(&page->lru, &pagelist);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
put_and_set:
/*
* Either remove the duplicate refcount from
* isolate_lru_page() or drop the page ref if it was
* not isolated.
*/
put_page(page);
set_status:
pp->status = err;
}
mm: stop returning -ENOENT from sys_move_pages() if nothing got migrated A patchset reworking sys_move_pages(). It removes the possibly large vmalloc by using multiple chunks when migrating large buffers. It also dramatically increases the throughput for large buffers since the lookup in new_page_node() is now limited to a single chunk, causing the quadratic complexity to have a much slower impact. There is no need to use any radix-tree-like structure to improve this lookup. sys_move_pages() duration on a 4-quadcore-opteron 2347HE (1.9Gz), migrating between nodes #2 and #3: length move_pages (us) move_pages+patch (us) 4kB 126 98 40kB 198 168 400kB 963 937 4MB 12503 11930 40MB 246867 11848 Patches #1 and #4 are the important ones: 1) stop returning -ENOENT from sys_move_pages() if nothing got migrated 2) don't vmalloc a huge page_to_node array for do_pages_stat() 3) extract do_pages_move() out of sys_move_pages() 4) rework do_pages_move() to work on page_sized chunks 5) move_pages: no need to set pp->page to ZERO_PAGE(0) by default This patch: There is no point in returning -ENOENT from sys_move_pages() if all pages were already on the right node, while we return 0 if only 1 page was not. Most application don't know where their pages are allocated, so it's not an error to try to migrate them anyway. Just return 0 and let the status array in user-space be checked if the application needs details. It will make the upcoming chunked-move_pages() support much easier. Signed-off-by: Brice Goglin <Brice.Goglin@inria.fr> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:15 +08:00
err = 0;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
if (!list_empty(&pagelist))
err = migrate_pages(&pagelist, new_page_node,
(unsigned long)pm);
up_read(&mm->mmap_sem);
return err;
}
/*
* Migrate an array of page address onto an array of nodes and fill
* the corresponding array of status.
*/
static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
struct page_to_node *pm = NULL;
nodemask_t task_nodes;
int err = 0;
int i;
task_nodes = cpuset_mems_allowed(task);
/* Limit nr_pages so that the multiplication may not overflow */
if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
err = -E2BIG;
goto out;
}
pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
if (!pm) {
err = -ENOMEM;
goto out;
}
/*
* Get parameters from user space and initialize the pm
* array. Return various errors if the user did something wrong.
*/
for (i = 0; i < nr_pages; i++) {
const void __user *p;
err = -EFAULT;
if (get_user(p, pages + i))
goto out_pm;
pm[i].addr = (unsigned long)p;
if (nodes) {
int node;
if (get_user(node, nodes + i))
goto out_pm;
err = -ENODEV;
if (!node_state(node, N_HIGH_MEMORY))
goto out_pm;
err = -EACCES;
if (!node_isset(node, task_nodes))
goto out_pm;
pm[i].node = node;
} else
pm[i].node = 0; /* anything to not match MAX_NUMNODES */
}
/* End marker */
pm[nr_pages].node = MAX_NUMNODES;
err = do_move_page_to_node_array(mm, pm, flags & MPOL_MF_MOVE_ALL);
if (err >= 0)
/* Return status information */
for (i = 0; i < nr_pages; i++)
if (put_user(pm[i].status, status + i))
err = -EFAULT;
out_pm:
vfree(pm);
out:
return err;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
/*
* Determine the nodes of an array of pages and store it in an array of status.
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
*/
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
const void __user **pages, int *status)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
{
unsigned long i;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
down_read(&mm->mmap_sem);
for (i = 0; i < nr_pages; i++) {
unsigned long addr = (unsigned long)(*pages);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
struct vm_area_struct *vma;
struct page *page;
int err;
vma = find_vma(mm, addr);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
if (!vma)
goto set_status;
page = follow_page(vma, addr, 0);
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-21 02:18:25 +08:00
err = PTR_ERR(page);
if (IS_ERR(page))
goto set_status;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
err = -ENOENT;
/* Use PageReserved to check for zero page */
if (!page || PageReserved(page))
goto set_status;
err = page_to_nid(page);
set_status:
*status = err;
pages++;
status++;
}
up_read(&mm->mmap_sem);
}
/*
* Determine the nodes of a user array of pages and store it in
* a user array of status.
*/
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
const void __user * __user *pages,
int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
int err;
for (i = 0; i < nr_pages; i += chunk_nr) {
if (chunk_nr + i > nr_pages)
chunk_nr = nr_pages - i;
err = copy_from_user(chunk_pages, &pages[i],
chunk_nr * sizeof(*chunk_pages));
if (err) {
err = -EFAULT;
goto out;
}
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
err = copy_to_user(&status[i], chunk_status,
chunk_nr * sizeof(*chunk_status));
if (err) {
err = -EFAULT;
goto out;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
}
err = 0;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
out:
return err;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
}
/*
* Move a list of pages in the address space of the currently executing
* process.
*/
asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
struct task_struct *task;
struct mm_struct *mm;
int err;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
/* Check flags */
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
/* Find the mm_struct */
read_lock(&tasklist_lock);
task = pid ? find_task_by_vpid(pid) : current;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
if (!task) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
mm = get_task_mm(task);
read_unlock(&tasklist_lock);
if (!mm)
return -EINVAL;
/*
* Check if this process has the right to modify the specified
* process. The right exists if the process has administrative
* capabilities, superuser privileges or the same
* userid as the target process.
*/
if ((current->euid != task->suid) && (current->euid != task->uid) &&
(current->uid != task->suid) && (current->uid != task->uid) &&
!capable(CAP_SYS_NICE)) {
err = -EPERM;
goto out;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
}
err = security_task_movememory(task);
if (err)
goto out;
if (nodes) {
err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
flags);
} else {
err = do_pages_stat(mm, nr_pages, pages, status);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
}
out:
mmput(mm);
return err;
}
/*
* Call migration functions in the vma_ops that may prepare
* memory in a vm for migration. migration functions may perform
* the migration for vmas that do not have an underlying page struct.
*/
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
const nodemask_t *from, unsigned long flags)
{
struct vm_area_struct *vma;
int err = 0;
for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
if (vma->vm_ops && vma->vm_ops->migrate) {
err = vma->vm_ops->migrate(vma, to, from, flags);
if (err)
break;
}
}
return err;
}
#endif