original_kernel/include/asm-xtensa/pgtable.h

472 lines
16 KiB
C
Raw Normal View History

/*
* linux/include/asm-xtensa/page.h
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version2 as
* published by the Free Software Foundation.
*
* Copyright (C) 2001 - 2005 Tensilica Inc.
*/
#ifndef _XTENSA_PGTABLE_H
#define _XTENSA_PGTABLE_H
#include <asm-generic/pgtable-nopmd.h>
#include <asm/page.h>
/* Assertions. */
#ifdef CONFIG_MMU
#if (XCHAL_MMU_RINGS < 2)
# error Linux build assumes at least 2 ring levels.
#endif
#if (XCHAL_MMU_CA_BITS != 4)
# error We assume exactly four bits for CA.
#endif
#if (XCHAL_MMU_SR_BITS != 0)
# error We have no room for SR bits.
#endif
/*
* Use the first min-wired way for mapping page-table pages.
* Page coloring requires a second min-wired way.
*/
#if (XCHAL_DTLB_MINWIRED_SETS == 0)
# error Need a min-wired way for mapping page-table pages
#endif
#define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY)
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
# if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2
# define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1)
# define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2)
# else
# error Page coloring requires its own wired dtlb way!
# endif
#endif
#endif /* CONFIG_MMU */
/*
* We only use two ring levels, user and kernel space.
*/
#define USER_RING 1 /* user ring level */
#define KERNEL_RING 0 /* kernel ring level */
/*
* The Xtensa architecture port of Linux has a two-level page table system,
* i.e. the logical three-level Linux page table layout are folded.
* Each task has the following memory page tables:
*
* PGD table (page directory), ie. 3rd-level page table:
* One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
* (Architectures that don't have the PMD folded point to the PMD tables)
*
* The pointer to the PGD table for a given task can be retrieved from
* the task structure (struct task_struct*) t, e.g. current():
* (t->mm ? t->mm : t->active_mm)->pgd
*
* PMD tables (page middle-directory), ie. 2nd-level page tables:
* Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
*
* PTE tables (page table entry), ie. 1st-level page tables:
* One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
* invalid_pte_table for absent mappings.
*
* The individual pages are 4 kB big with special pages for the empty_zero_page.
*/
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* Entries per page directory level: we use two-level, so
* we don't really have any PMD directory physically.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PTE_SHIFT 10
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
#define PGD_ORDER 0
#define PMD_ORDER 0
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_ADDRESS XCHAL_SEG_MAPPABLE_VADDR
#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
/* virtual memory area. We keep a distance to other memory regions to be
* on the safe side. We also use this area for cache aliasing.
*/
// FIXME: virtual memory area must be configuration-dependent
#define VMALLOC_START 0xC0000000
#define VMALLOC_END 0xC7FF0000
/* Xtensa Linux config PTE layout (when present):
* 31-12: PPN
* 11-6: Software
* 5-4: RING
* 3-0: CA
*
* Similar to the Alpha and MIPS ports, we need to keep track of the ref
* and mod bits in software. We have a software "you can read
* from this page" bit, and a hardware one which actually lets the
* process read from the page. On the same token we have a software
* writable bit and the real hardware one which actually lets the
* process write to the page.
*
* See further below for PTE layout for swapped-out pages.
*/
#define _PAGE_VALID (1<<0) /* hardware: page is accessible */
#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
/* None of these cache modes include MP coherency: */
#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
#if XCHAL_DCACHE_IS_WRITEBACK
# define _PAGE_WRITEBACK (1<<2) /* write back */
# define _PAGE_WRITETHRU (2<<2) /* write through */
#else
# define _PAGE_WRITEBACK (1<<2) /* assume write through */
# define _PAGE_WRITETHRU (1<<2)
#endif
#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
#define _CACHE_MASK (3<<2)
#define _PAGE_USER (1<<4) /* user access (ring=1) */
#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
/* Software */
#define _PAGE_RW (1<<6) /* software: page writable */
#define _PAGE_DIRTY (1<<7) /* software: page dirty */
#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
#ifdef CONFIG_MMU
# define PAGE_NONE __pgprot(_PAGE_PRESENT)
# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
# define PAGE_INVALID __pgprot(_PAGE_USER)
# if (DCACHE_WAY_SIZE > PAGE_SIZE)
# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
# else
# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
# endif
#else /* no mmu */
# define PAGE_NONE __pgprot(0)
# define PAGE_SHARED __pgprot(0)
# define PAGE_COPY __pgprot(0)
# define PAGE_READONLY __pgprot(0)
# define PAGE_KERNEL __pgprot(0)
#endif
/*
* On certain configurations of Xtensa MMUs (eg. the initial Linux config),
* the MMU can't do page protection for execute, and considers that the same as
* read. Also, write permissions may imply read permissions.
* What follows is the closest we can get by reasonable means..
* See linux/mm/mmap.c for protection_map[] array that uses these definitions.
*/
#define __P000 PAGE_NONE /* private --- */
#define __P001 PAGE_READONLY /* private --r */
#define __P010 PAGE_COPY /* private -w- */
#define __P011 PAGE_COPY /* private -wr */
#define __P100 PAGE_READONLY /* private x-- */
#define __P101 PAGE_READONLY /* private x-r */
#define __P110 PAGE_COPY /* private xw- */
#define __P111 PAGE_COPY /* private xwr */
#define __S000 PAGE_NONE /* shared --- */
#define __S001 PAGE_READONLY /* shared --r */
#define __S010 PAGE_SHARED /* shared -w- */
#define __S011 PAGE_SHARED /* shared -wr */
#define __S100 PAGE_READONLY /* shared x-- */
#define __S101 PAGE_READONLY /* shared x-r */
#define __S110 PAGE_SHARED /* shared xw- */
#define __S111 PAGE_SHARED /* shared xwr */
#ifndef __ASSEMBLY__
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
extern unsigned long empty_zero_page[1024];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
/*
* The pmd contains the kernel virtual address of the pte page.
*/
#define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
/*
* The following only work if pte_present() is true.
*/
#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
#define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
#define pte_clear(mm,addr,ptep) \
do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pte_same(a,b) (pte_val(a) == pte_val(b))
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
/*
* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void update_pte(pte_t *ptep, pte_t pteval)
{
*ptep = pteval;
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
#endif
}
struct mm_struct;
static inline void
set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
{
update_pte(ptep, pteval);
}
static inline void
set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
*pmdp = pmdval;
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
#endif
}
struct vm_area_struct;
static inline int
ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
pte_t pte = *ptep;
if (!pte_young(pte))
return 0;
update_pte(ptep, pte_mkold(pte));
return 1;
}
static inline int
ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
pte_t pte = *ptep;
if (!pte_dirty(pte))
return 0;
update_pte(ptep, pte_mkclean(pte));
return 1;
}
static inline pte_t
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(mm, addr, ptep);
return pte;
}
static inline void
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_t pte = *ptep;
update_pte(ptep, pte_wrprotect(pte));
}
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir,address) ((pmd_t*)(dir))
/* Find an entry in the third-level page table.. */
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir,addr) \
((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/*
* Encode and decode a swap entry.
* Each PTE in a process VM's page table is either:
* "present" -- valid and not swapped out, protection bits are meaningful;
* "not present" -- which further subdivides in these two cases:
* "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
* "swapped out" -- the page is swapped out, and the SWP macros below
* are used to store swap file info in the PTE itself.
*
* In the Xtensa processor MMU, any PTE entries in user space (or anywhere
* in virtual memory that can map differently across address spaces)
* must have a correct ring value that represents the RASID field that
* is changed when switching address spaces. Eg. such PTE entries cannot
* be set to ring zero, because that can cause a (global) kernel ASID
* entry to be created in the TLBs (even with invalid cache attribute),
* potentially causing a multihit exception when going back to another
* address space that mapped the same virtual address at another ring.
*
* SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
* We also avoid using the _PAGE_VALID bit which must be zero for non-present
* pages.
*
* We end up with the following available bits: 1..3 and 7..31.
* We don't bother with 1..3 for now (we can use them later if needed),
* and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
* for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
* is currently implemented as an index into swap_info[MAX_SWAPFILES]
* and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
* However, for some reason all other architectures in the 2.4 kernel
* reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
* SWP_OFFSET is an offset into the swap file in page-size units, so
* with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
*
* FIXME: 2 GB isn't very big. Other bits can be used to allow
* larger swap sizes. In the meantime, it appears relatively easy to get
* around the 2 GB limitation by simply using multiple swap files.
*/
#define __swp_type(entry) (((entry).val >> 7) & 0x3f)
#define __swp_offset(entry) ((entry).val >> 13)
#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
#endif /* !defined (__ASSEMBLY__) */
#ifdef __ASSEMBLY__
/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
* _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
* _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
* _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
*
* Note: We require an additional temporary register which can be the same as
* the register that holds the address.
*
* ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
*
*/
#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
_PGD_INDEX(tmp, adr); \
addx4 mm, tmp, mm
#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
srli pmd, pmd, PAGE_SHIFT; \
slli pmd, pmd, PAGE_SHIFT; \
addx4 pmd, tmp, pmd
#else
extern void paging_init(void);
#define kern_addr_valid(addr) (1)
extern void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte);
/*
* remap a physical page `pfn' of size `size' with page protection `prot'
* into virtual address `from'
*/
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
remap_pfn_range(vma, from, pfn, size, prot)
/* No page table caches to init */
#define pgtable_cache_init() do { } while (0)
typedef pte_t *pte_addr_t;
#endif /* !defined (__ASSEMBLY__) */
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTEP_MKDIRTY
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>
#endif /* _XTENSA_PGTABLE_H */