Commit Graph

8 Commits

Author SHA1 Message Date
Mike Frysinger 8d6c242062 Blackfin arch: rename _return_from_exception to _bfin_return_from_exception and export it
Signed-off-by: Mike Frysinger <michael.frysinger@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-11-21 15:53:49 +08:00
Mike Frysinger d0025e5edf Blackfin arch: move EXPORT_SYMBOL() to C files where the symbol is actually defined
Signed-off-by: Mike Frysinger <michael.frysinger@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-11-21 15:34:51 +08:00
Michael Hennerich 5c91fb902d Blackfin arch: Add assembly function insl_16
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix
 * it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up
 * with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
 * skb_reserve(NET_IP_ALIGN);
 *
 * The downside to this alignment of the IP header is that the DMA is
 * now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
 *
 * Since this trade off varies between architectures, we allow
 * NET_IP_ALIGN
 * to be overridden.
 */

This new function insl_16 allows to read form 32-bit IO and writes to
16-bit aligned memory. This is useful in above described scenario -
In particular with the AXIS AX88180 Gigabit Ethernet MAC.
Once the device is in 32-bit mode, reads from the RX FIFO always
decrements 4bytes.
While on the other side the destination address in SDRAM is always
16-bit aligned.
If we use skb_reserve(0) the receive buffer is 32-bit aligned but later
we hit a unaligned exception in the IP code.

Signed-off-by: Michael Hennerich <michael.hennerich@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-11-17 23:46:58 +08:00
Adrian Bunk 8d2e24c3c1 Blackfin arch: unexport get_wchan
The only user of get_wchan I was able to find is the proc fs - and proc
can't be built modular.

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-11-17 23:05:06 +08:00
Adrian Bunk 05c484355f Blackfin arch: remove dump_thread()
The only user is the a.out support.

It was therefore removed prior to the blackfin merge from all
architectures not supporting a.out.

Currently, Blackfin doesn't suppport a.out.

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-11-18 00:41:56 +08:00
Bernd Schmidt ef4a47db52 Blackfin arch: Export strcpy - occasionally get module link failures otherwise
Signed-off-by: Bernd Schmidt <bernd.schmidt@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-10-10 17:45:22 +08:00
Mike Frysinger 1f83b8f148 Blackfin arch: cleanup warnings from checkpatch -- no functional changes
Signed-off-by: Mike Frysinger <michael.frysinger@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-07-12 22:58:21 +08:00
Bryan Wu 1394f03221 blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix!  Tinyboards.

The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc.  (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000.  Since then ADI has put this core into its Blackfin
processor family of devices.  The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set.  It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.

The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf

The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc

This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/

We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel

[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:58 -07:00