Commit Graph

218567 Commits

Author SHA1 Message Date
KOSAKI Motohiro bc57e00f5e vmscan: synchronous lumpy reclaim should not call congestion_wait()
congestion_wait() means "wait until queue congestion is cleared".
However, synchronous lumpy reclaim does not need this congestion_wait() as
shrink_page_list(PAGEOUT_IO_SYNC) uses wait_on_page_writeback() and it
provides the necessary waiting.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Mel Gorman 52bb919866 writeback: account for time spent congestion_waited
There is strong evidence to indicate a lot of time is being spent in
congestion_wait(), some of it unnecessarily.  This patch adds a tracepoint
for congestion_wait to record when congestion_wait() was called, how long
the timeout was for and how long it actually slept.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Mel Gorman e11da5b4fd tracing, vmscan: add trace events for LRU list shrinking
There have been numerous reports of stalls that pointed at the problem
being somewhere in the VM.  There are multiple roots to the problems which
means dealing with any of the root problems in isolation is tricky to
justify on their own and they would still need integration testing.  This
patch series puts together two different patch sets which in combination
should tackle some of the root causes of latency problems being reported.

Patch 1 adds a tracepoint for shrink_inactive_list.  For this series, the
most important results is being able to calculate the scanning/reclaim
ratio as a measure of the amount of work being done by page reclaim.

Patch 2 accounts for time spent in congestion_wait.

Patches 3-6 were originally developed by Kosaki Motohiro but reworked for
this series.  It has been noted that lumpy reclaim is far too aggressive
and trashes the system somewhat.  As SLUB uses high-order allocations, a
large cost incurred by lumpy reclaim will be noticeable.  It was also
reported during transparent hugepage support testing that lumpy reclaim
was trashing the system and these patches should mitigate that problem
without disabling lumpy reclaim.

Patch 7 adds wait_iff_congested() and replaces some callers of
congestion_wait().  wait_iff_congested() only sleeps if there is a BDI
that is currently congested.  Patch 8 notes that any BDI being congested
is not necessarily a problem because there could be multiple BDIs of
varying speeds and numberous zones.  It attempts to track when a zone
being reclaimed contains many pages backed by a congested BDI and if so,
reclaimers wait on the congestion queue.

I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each
machine had 3G of RAM and the CPUs were

X86:    Intel P4 2-core
X86-64: AMD Phenom 4-core
PPC64:  PPC970MP

Each used a single disk and the onboard IO controller.  Dirty ratio was
left at 20.  I'm just going to report for X86-64 and PPC64 in a vague
attempt to keep this report short.  Four kernels were tested each based on
v2.6.36-rc4

traceonly-v2r2:     Patches 1 and 2 to instrument vmscan reclaims and congestion_wait
lowlumpy-v2r3:      Patches 1-6 to test if lumpy reclaim is better
waitcongest-v2r3:   Patches 1-7 to only wait on congestion
waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested

nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion
nodirect-v1r5:  Patches 1-10 to disable filesystem writeback for better IO

The tests run were as follows

kernbench
	compile-based benchmark. Smoke test performance

sysbench
	OLTP read-only benchmark. Will be re-run in the future as read-write

micro-mapped-file-stream
	This is a micro-benchmark from Johannes Weiner that accesses a
	large sparse-file through mmap(). It was configured to run in only
	single-CPU mode but can be indicative of how well page reclaim
	identifies suitable pages.

stress-highalloc
	Tries to allocate huge pages under heavy load.

kernbench, iozone and sysbench did not report any performance regression
on any machine.  sysbench did pressure the system lightly and there was
reclaim activity but there were no difference of major interest between
the kernels.

X86-64 micro-mapped-file-stream

                                      traceonly-v2r2           lowlumpy-v2r3        waitcongest-v2r3     waitwriteback-v2r4
pgalloc_dma                       1639.00 (   0.00%)       667.00 (-145.73%)      1167.00 ( -40.45%)       578.00 (-183.56%)
pgalloc_dma32                  2842410.00 (   0.00%)   2842626.00 (   0.01%)   2843043.00 (   0.02%)   2843014.00 (   0.02%)
pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgsteal_dma                        729.00 (   0.00%)        85.00 (-757.65%)       609.00 ( -19.70%)       125.00 (-483.20%)
pgsteal_dma32                  2338721.00 (   0.00%)   2447354.00 (   4.44%)   2429536.00 (   3.74%)   2436772.00 (   4.02%)
pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_kswapd_dma                 1469.00 (   0.00%)       532.00 (-176.13%)      1078.00 ( -36.27%)       220.00 (-567.73%)
pgscan_kswapd_dma32            4597713.00 (   0.00%)   4503597.00 (  -2.09%)   4295673.00 (  -7.03%)   3891686.00 ( -18.14%)
pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_direct_dma                   71.00 (   0.00%)       134.00 (  47.01%)       243.00 (  70.78%)       352.00 (  79.83%)
pgscan_direct_dma32             305820.00 (   0.00%)    280204.00 (  -9.14%)    600518.00 (  49.07%)    957485.00 (  68.06%)
pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pageoutrun                       16296.00 (   0.00%)     21254.00 (  23.33%)     18447.00 (  11.66%)     20067.00 (  18.79%)
allocstall                         443.00 (   0.00%)       273.00 ( -62.27%)       513.00 (  13.65%)      1568.00 (  71.75%)

These are based on the raw figures taken from /proc/vmstat.  It's a rough
measure of reclaim activity.  Note that allocstall counts are higher
because we are entering direct reclaim more often as a result of not
sleeping in congestion.  In itself, it's not necessarily a bad thing.
It's easier to get a view of what happened from the vmscan tracepoint
report.

FTrace Reclaim Statistics: vmscan

                                traceonly-v2r2   lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4
Direct reclaims                                443        273        513       1568
Direct reclaim pages scanned                305968     280402     600825     957933
Direct reclaim pages reclaimed               43503      19005      30327     117191
Direct reclaim write file async I/O              0          0          0          0
Direct reclaim write anon async I/O              0          3          4         12
Direct reclaim write file sync I/O               0          0          0          0
Direct reclaim write anon sync I/O               0          0          0          0
Wake kswapd requests                        187649     132338     191695     267701
Kswapd wakeups                                   3          1          4          1
Kswapd pages scanned                       4599269    4454162    4296815    3891906
Kswapd pages reclaimed                     2295947    2428434    2399818    2319706
Kswapd reclaim write file async I/O              1          0          1          1
Kswapd reclaim write anon async I/O             59        187         41        222
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)         4.34       2.52       6.63       2.96
Time kswapd awake (seconds)                  11.15      10.25      11.01      10.19

Total pages scanned                        4905237   4734564   4897640   4849839
Total pages reclaimed                      2339450   2447439   2430145   2436897
%age total pages scanned/reclaimed          47.69%    51.69%    49.62%    50.25%
%age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
%age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
Percentage Time Spent Direct Reclaim        29.23%    19.02%    38.48%    20.25%
Percentage Time kswapd Awake                78.58%    78.85%    76.83%    79.86%

What is interesting here for nocongest in particular is that while direct
reclaim scans more pages, the overall number of pages scanned remains the
same and the ratio of pages scanned to pages reclaimed is more or less the
same.  In other words, while we are sleeping less, reclaim is not doing
more work and as direct reclaim and kswapd is awake for less time, it
would appear to be doing less work.

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited                87        196         64          0
Direct time   congest     waited            4604ms     4732ms     5420ms        0ms
Direct full   congest     waited                72        145         53          0
Direct number conditional waited                 0          0        324       1315
Direct time   conditional waited               0ms        0ms        0ms        0ms
Direct full   conditional waited                 0          0          0          0
KSwapd number congest     waited                20         10         15          7
KSwapd time   congest     waited            1264ms      536ms      884ms      284ms
KSwapd full   congest     waited                10          4          6          2
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at
all asleep with the patches.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)         10.51     10.73      10.6     11.66
Total Elapsed Time (seconds)                 14.19     13.00     14.33     12.76

Overall, the tests completed faster. It is interesting to note that backing off further
when a zone is congested and not just a BDI was more efficient overall.

PPC64 micro-mapped-file-stream
pgalloc_dma                    3024660.00 (   0.00%)   3027185.00 (   0.08%)   3025845.00 (   0.04%)   3026281.00 (   0.05%)
pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgsteal_dma                    2508073.00 (   0.00%)   2565351.00 (   2.23%)   2463577.00 (  -1.81%)   2532263.00 (   0.96%)
pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_kswapd_dma              4601307.00 (   0.00%)   4128076.00 ( -11.46%)   3912317.00 ( -17.61%)   3377165.00 ( -36.25%)
pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pgscan_direct_dma               629825.00 (   0.00%)    971622.00 (  35.18%)   1063938.00 (  40.80%)   1711935.00 (  63.21%)
pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
pageoutrun                       27776.00 (   0.00%)     20458.00 ( -35.77%)     18763.00 ( -48.04%)     18157.00 ( -52.98%)
allocstall                         977.00 (   0.00%)      2751.00 (  64.49%)      2098.00 (  53.43%)      5136.00 (  80.98%)

Similar trends to x86-64. allocstalls are up but it's not necessarily bad.

FTrace Reclaim Statistics: vmscan
Direct reclaims                                977       2709       2098       5136
Direct reclaim pages scanned                629825     963814    1063938    1711935
Direct reclaim pages reclaimed               75550     242538     150904     387647
Direct reclaim write file async I/O              0          0          0          2
Direct reclaim write anon async I/O              0         10          0          4
Direct reclaim write file sync I/O               0          0          0          0
Direct reclaim write anon sync I/O               0          0          0          0
Wake kswapd requests                        392119    1201712     571935     571921
Kswapd wakeups                                   3          2          3          3
Kswapd pages scanned                       4601307    4128076    3912317    3377165
Kswapd pages reclaimed                     2432523    2318797    2312673    2144616
Kswapd reclaim write file async I/O             20          1          1          1
Kswapd reclaim write anon async I/O             57        132         11        121
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)         6.19       7.30      13.04      10.88
Time kswapd awake (seconds)                  21.73      26.51      25.55      23.90

Total pages scanned                        5231132   5091890   4976255   5089100
Total pages reclaimed                      2508073   2561335   2463577   2532263
%age total pages scanned/reclaimed          47.95%    50.30%    49.51%    49.76%
%age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
%age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
Percentage Time Spent Direct Reclaim        18.89%    20.65%    32.65%    27.65%
Percentage Time kswapd Awake                72.39%    80.68%    78.21%    77.40%

Again, a similar trend that the congestion_wait changes mean that direct
reclaim scans more pages but the overall number of pages scanned while
slightly reduced, are very similar.  The ratio of scanning/reclaimed
remains roughly similar.  The downside is that kswapd and direct reclaim
was awake longer and for a larger percentage of the overall workload.
It's possible there were big differences in the amount of time spent
reclaiming slab pages between the different kernels which is plausible
considering that the micro tests runs after fsmark and sysbench.

Trace Reclaim Statistics: congestion_wait
Direct number congest     waited               845       1312        104          0
Direct time   congest     waited           19416ms    26560ms     7544ms        0ms
Direct full   congest     waited               745       1105         72          0
Direct number conditional waited                 0          0       1322       2935
Direct time   conditional waited               0ms        0ms       12ms      312ms
Direct full   conditional waited                 0          0          0          3
KSwapd number congest     waited                39        102         75         63
KSwapd time   congest     waited            2484ms     6760ms     5756ms     3716ms
KSwapd full   congest     waited                20         48         46         25
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

The vanilla kernel spent 20 seconds asleep in direct reclaim and only
312ms asleep with the patches.  The time kswapd spent congest waited was
also reduced by a large factor.

MMTests Statistics: duration
ser/Sys Time Running Test (seconds)         26.58     28.05      26.9     28.47
Total Elapsed Time (seconds)                 30.02     32.86     32.67     30.88

With all patches applies, the completion times are very similar.

X86-64 STRESS-HIGHALLOC
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Pass 1          82.00 ( 0.00%)    84.00 ( 2.00%)    85.00 ( 3.00%)    85.00 ( 3.00%)
Pass 2          90.00 ( 0.00%)    87.00 (-3.00%)    88.00 (-2.00%)    89.00 (-1.00%)
At Rest         92.00 ( 0.00%)    90.00 (-2.00%)    90.00 (-2.00%)    91.00 (-1.00%)

Success figures across the board are broadly similar.

                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Direct reclaims                               1045        944        886        887
Direct reclaim pages scanned                135091     119604     109382     101019
Direct reclaim pages reclaimed               88599      47535      47863      46671
Direct reclaim write file async I/O            494        283        465        280
Direct reclaim write anon async I/O          29357      13710      16656      13462
Direct reclaim write file sync I/O             154          2          2          3
Direct reclaim write anon sync I/O           14594        571        509        561
Wake kswapd requests                          7491        933        872        892
Kswapd wakeups                                 814        778        731        780
Kswapd pages scanned                       7290822   15341158   11916436   13703442
Kswapd pages reclaimed                     3587336    3142496    3094392    3187151
Kswapd reclaim write file async I/O          91975      32317      28022      29628
Kswapd reclaim write anon async I/O        1992022     789307     829745     849769
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)      4588.93    2467.16    2495.41    2547.07
Time kswapd awake (seconds)                2497.66    1020.16    1098.06    1176.82

Total pages scanned                        7425913  15460762  12025818  13804461
Total pages reclaimed                      3675935   3190031   3142255   3233822
%age total pages scanned/reclaimed          49.50%    20.63%    26.13%    23.43%
%age total pages scanned/written            28.66%     5.41%     7.28%     6.47%
%age  file pages scanned/written             1.25%     0.21%     0.24%     0.22%
Percentage Time Spent Direct Reclaim        57.33%    42.15%    42.41%    42.99%
Percentage Time kswapd Awake                43.56%    27.87%    29.76%    31.25%

Scanned/reclaimed ratios again look good with big improvements in
efficiency.  The Scanned/written ratios also look much improved.  With a
better scanned/written ration, there is an expectation that IO would be
more efficient and indeed, the time spent in direct reclaim is much
reduced by the full series and kswapd spends a little less time awake.

Overall, indications here are that allocations were happening much faster
and this can be seen with a graph of the latency figures as the
allocations were taking place
http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited              1333        204        169          4
Direct time   congest     waited           78896ms     8288ms     7260ms      200ms
Direct full   congest     waited               756         92         69          2
Direct number conditional waited                 0          0         26        186
Direct time   conditional waited               0ms        0ms        0ms     2504ms
Direct full   conditional waited                 0          0          0         25
KSwapd number congest     waited                 4        395        227        282
KSwapd time   congest     waited             384ms    25136ms    10508ms    18380ms
KSwapd full   congest     waited                 3        232         98        176
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0
KSwapd full   conditional waited               318          0        312          9

Overall, the time spent speeping is reduced.  kswapd is still hitting
congestion_wait() but that is because there are callers remaining where it
wasn't clear in advance if they should be changed to wait_iff_congested()
or not.  Overall the sleep imes are reduced though - from 79ish seconds to
about 19.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)       3415.43   3386.65   3388.39    3377.5
Total Elapsed Time (seconds)               5733.48   3660.33   3689.41   3765.39

With the full series, the time to complete the tests are reduced by 30%

PPC64 STRESS-HIGHALLOC
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Pass 1          17.00 ( 0.00%)    34.00 (17.00%)    38.00 (21.00%)    43.00 (26.00%)
Pass 2          25.00 ( 0.00%)    37.00 (12.00%)    42.00 (17.00%)    46.00 (21.00%)
At Rest         49.00 ( 0.00%)    43.00 (-6.00%)    45.00 (-4.00%)    51.00 ( 2.00%)

Success rates there are *way* up particularly considering that the 16MB
huge pages on PPC64 mean that it's always much harder to allocate them.

FTrace Reclaim Statistics: vmscan
              stress-highalloc  stress-highalloc  stress-highalloc  stress-highalloc
                traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
Direct reclaims                                499        505        564        509
Direct reclaim pages scanned                223478      41898      51818      45605
Direct reclaim pages reclaimed              137730      21148      27161      23455
Direct reclaim write file async I/O            399        136        162        136
Direct reclaim write anon async I/O          46977       2865       4686       3998
Direct reclaim write file sync I/O              29          0          1          3
Direct reclaim write anon sync I/O           31023        159        237        239
Wake kswapd requests                           420        351        360        326
Kswapd wakeups                                 185        294        249        277
Kswapd pages scanned                      15703488   16392500   17821724   17598737
Kswapd pages reclaimed                     5808466    2908858    3139386    3145435
Kswapd reclaim write file async I/O         159938      18400      18717      13473
Kswapd reclaim write anon async I/O        3467554     228957     322799     234278
Kswapd reclaim write file sync I/O               0          0          0          0
Kswapd reclaim write anon sync I/O               0          0          0          0
Time stalled direct reclaim (seconds)      9665.35    1707.81    2374.32    1871.23
Time kswapd awake (seconds)                9401.21    1367.86    1951.75    1328.88

Total pages scanned                       15926966  16434398  17873542  17644342
Total pages reclaimed                      5946196   2930006   3166547   3168890
%age total pages scanned/reclaimed          37.33%    17.83%    17.72%    17.96%
%age total pages scanned/written            23.27%     1.52%     1.94%     1.43%
%age  file pages scanned/written             1.01%     0.11%     0.11%     0.08%
Percentage Time Spent Direct Reclaim        44.55%    35.10%    41.42%    36.91%
Percentage Time kswapd Awake                86.71%    43.58%    52.67%    41.14%

While the scanning rates are slightly up, the scanned/reclaimed and
scanned/written figures are much improved.  The time spent in direct
reclaim and with kswapd are massively reduced, mostly by the lowlumpy
patches.

FTrace Reclaim Statistics: congestion_wait
Direct number congest     waited               725        303        126          3
Direct time   congest     waited           45524ms     9180ms     5936ms      300ms
Direct full   congest     waited               487        190         52          3
Direct number conditional waited                 0          0        200        301
Direct time   conditional waited               0ms        0ms        0ms     1904ms
Direct full   conditional waited                 0          0          0         19
KSwapd number congest     waited                 0          2         23          4
KSwapd time   congest     waited               0ms      200ms      420ms      404ms
KSwapd full   congest     waited                 0          2          2          4
KSwapd number conditional waited                 0          0          0          0
KSwapd time   conditional waited               0ms        0ms        0ms        0ms
KSwapd full   conditional waited                 0          0          0          0

Not as dramatic a story here but the time spent asleep is reduced and we
can still see what wait_iff_congested is going to sleep when necessary.

MMTests Statistics: duration
User/Sys Time Running Test (seconds)      12028.09   3157.17   3357.79   3199.16
Total Elapsed Time (seconds)              10842.07   3138.72   3705.54   3229.85

The time to complete this test goes way down.  With the full series, we
are allocating over twice the number of huge pages in 30% of the time and
there is a corresponding impact on the allocation latency graph available
at.

http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps

This patch:

Add a trace event for shrink_inactive_list() and updates the sample
postprocessing script appropriately.  It can be used to determine how many
pages were reclaimed and for non-lumpy reclaim where exactly the pages
were reclaimed from.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Shaohua Li 66d9a986cd vmscan: delete dead code
`priority' cannot be negative here.  And the comment is obsolete.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Will Deacon bce54bbfde mm: fix typo in mm.h when NODE_NOT_IN_PAGE_FLAGS
NODE_NOT_IN_PAGE_FLAGS is defined in mm.h when the node information is not
stored in the page flags bitmap.

Unfortunately, there's a typo in one of the checks for it.  This patch
fixes it (s/NODE_NOT_IN_PAGEFLAGS/NODE_NOT_IN_PAGE_FLAGS/).  Since this
has been around for ages, I doubt it's been causing any serious problems.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
Michael Rubin 79da826aee writeback: report dirty thresholds in /proc/vmstat
The kernel already exposes the user desired thresholds in /proc/sys/vm
with dirty_background_ratio and background_ratio.  But the kernel may
alter the number requested without giving the user any indication that is
the case.

Knowing the actual ratios the kernel is honoring can help app developers
understand how their buffered IO will be sent to the disk.

        $ grep threshold /proc/vmstat
        nr_dirty_threshold 409111
        nr_dirty_background_threshold 818223

Signed-off-by: Michael Rubin <mrubin@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Michael Rubin 2ac390370a writeback: add /sys/devices/system/node/<node>/vmstat
For NUMA node systems it is important to have visibility in memory
characteristics.  Two of the /proc/vmstat values "nr_written" and
"nr_dirtied" are added here.

	# cat /sys/devices/system/node/node20/vmstat
	nr_written 0
	nr_dirtied 0

Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Michael Rubin ea941f0e2a writeback: add nr_dirtied and nr_written to /proc/vmstat
To help developers and applications gain visibility into writeback
behaviour adding two entries to vm_stat_items and /proc/vmstat.  This will
allow us to track the "written" and "dirtied" counts.

   # grep nr_dirtied /proc/vmstat
   nr_dirtied 3747
   # grep nr_written /proc/vmstat
   nr_written 3618

Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Michael Rubin f629d1c9bd mm: add account_page_writeback()
To help developers and applications gain visibility into writeback
behaviour this patch adds two counters to /proc/vmstat.

  # grep nr_dirtied /proc/vmstat
  nr_dirtied 3747
  # grep nr_written /proc/vmstat
  nr_written 3618

These entries allow user apps to understand writeback behaviour over time
and learn how it is impacting their performance.  Currently there is no
way to inspect dirty and writeback speed over time.  It's not possible for
nr_dirty/nr_writeback.

These entries are necessary to give visibility into writeback behaviour.
We have /proc/diskstats which lets us understand the io in the block
layer.  We have blktrace for more in depth understanding.  We have
e2fsprogs and debugsfs to give insight into the file systems behaviour,
but we don't offer our users the ability understand what writeback is
doing.  There is no way to know how active it is over the whole system, if
it's falling behind or to quantify it's efforts.  With these values
exported users can easily see how much data applications are sending
through writeback and also at what rates writeback is processing this
data.  Comparing the rates of change between the two allow developers to
see when writeback is not able to keep up with incoming traffic and the
rate of dirty memory being sent to the IO back end.  This allows folks to
understand their io workloads and track kernel issues.  Non kernel
engineers at Google often use these counters to solve puzzling performance
problems.

Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written

Patch #5 add writeback thresholds to /proc/vmstat

Currently these values are in debugfs. But they should be promoted to
/proc since they are useful for developers who are writing databases
and file servers and are not debugging the kernel.

The output is as below:

 # grep threshold /proc/vmstat
 nr_pages_dirty_threshold 409111
 nr_pages_dirty_background_threshold 818223

This patch:

This allows code outside of the mm core to safely manipulate page
writeback state and not worry about the other accounting.  Not using these
routines means that some code will lose track of the accounting and we get
bugs.

Modify nilfs2 to use interface.

Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Jiro SEKIBA <jir@unicus.jp>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Vasiliy Kulikov 0def08e3ac mm/mempolicy.c: check return code of check_range
Function check_range may return ERR_PTR(...). Check for it.

Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Minchan Kim 74e3f3c339 vmscan: prevent background aging of anon page in no swap system
Ying Han reported that backing aging of anon pages in no swap system
causes unnecessary TLB flush.

When I sent a patch(69c8548175), I wanted this patch but Rik pointed out
and allowed aging of anon pages to give a chance to promote from inactive
to active LRU.

It has a two problem.

1) non-swap system

Never make sense to age anon pages.

2) swap configured but still doesn't swapon

It doesn't make sense to age anon pages until swap-on time.  But it's
arguable.  If we have aged anon pages by swapon, VM have moved anon pages
from active to inactive.  And in the time swapon by admin, the VM can't
reclaim hot pages so we can protect hot pages swapout.

But let's think about it.  When does swap-on happen?  It depends on admin.
 we can't expect it.  Nonetheless, we have done aging of anon pages to
protect hot pages swapout.  It means we lost run time overhead when below
high watermark but gain hot page swap-[in/out] overhead when VM decide
swapout.  Is it true?  Let's think more detail.  We don't promote anon
pages in case of non-swap system.  So even though VM does aging of anon
pages, the pages would be in inactive LRU for a long time.  It means many
of pages in there would mark access bit again.  So access bit hot/code
separation would be pointless.

This patch prevents unnecessary anon pages demotion in not-yet-swapon and
non-configured swap system.  Even, in non-configuared swap system
inactive_anon_is_low can be compiled out.

It could make side effect that hot anon pages could swap out when admin
does swap on.  But I think sooner or later it would be steady state.  So
it's not a big problem.

We could lose someting but gain more thing(TLB flush and unnecessary
function call to demote anon pages).

Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
KAMEZAWA Hiroyuki 49ac825587 memory hotplug: unify is_removable and offline detection code
Now, sysfs interface of memory hotplug shows whether the section is
removable or not.  But it checks only migrateype of pages and doesn't
check details of cluster of pages.

Next, memory hotplug's set_migratetype_isolate() has the same kind of
check, too.

This patch adds the function __count_unmovable_pages() and makes above 2
checks to use the same logic.  Then, is_removable and hotremove code uses
the same logic.  No changes in the hotremove logic itself.

TODO: need to find a way to check RECLAMABLE. But, considering bit,
      calling shrink_slab() against a range before starting memory hotremove
      sounds better. If so, this patch's logic doesn't need to be changed.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reported-by: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
KAMEZAWA Hiroyuki 4b20477f58 memory hotplug: fix notifier's return value check
Even if notifier cannot find any pages, it doesn't mean no pages are
available...And, if there are no notifiers registered, this condition will
be always true and memory hotplug will show -EBUSY.

This is a bug but not critical.

In most case, a pageblock which will be offlined is MIGRATE_MOVABLE This
"notifier" is called only when the pageblock is _not_ MIGRATE_MOVABLE.
But if not MIGRATE_MOVABLE, it's common case that memory hotplug will
fail.  So, no one notice this bug.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Minchan Kim cf608ac19c mm: compaction: fix COMPACTPAGEFAILED counting
Presently update_nr_listpages() doesn't have a role.  That's because lists
passed is always empty just after calling migrate_pages.  The
migrate_pages cleans up page list which have failed to migrate before
returning by aaa994b3.

 [PATCH] page migration: handle freeing of pages in migrate_pages()

 Do not leave pages on the lists passed to migrate_pages().  Seems that we will
 not need any postprocessing of pages.  This will simplify the handling of
 pages by the callers of migrate_pages().

At that time, we thought we don't need any postprocessing of pages.  But
the situation is changed.  The compaction need to know the number of
failed to migrate for COMPACTPAGEFAILED stat

This patch makes new rule for caller of migrate_pages to call
putback_lru_pages.  So caller need to clean up the lists so it has a
chance to postprocess the pages.  [suggested by Christoph Lameter]

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Thadeu Lima de Souza Cascardo e4455abb50 mm: only build per-node scan_unevictable functions when NUMA is enabled
Non-NUMA systems do never create these files anyway, since they are only
created by driver subsystem when NUMA is configured.

[akpm@linux-foundation.org: cleanup]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@holoscopio.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
zeal f19e77a3dc include/linux/pageblock-flags.h: fix set_pageblock_flags() macro definiton
The presently-unused macro was missing one parameter.

Signed-off-by: zeal <zealcook@gmail.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Wu Fengguang 1b430beee5 writeback: remove nonblocking/encountered_congestion references
This removes more dead code that was somehow missed by commit 0d99519efe
(writeback: remove unused nonblocking and congestion checks).  There are
no behavior change except for the removal of two entries from one of the
ext4 tracing interface.

The nonblocking checks in ->writepages are no longer used because the
flusher now prefer to block on get_request_wait() than to skip inodes on
IO congestion.  The latter will lead to more seeky IO.

The nonblocking checks in ->writepage are no longer used because it's
redundant with the WB_SYNC_NONE check.

We no long set ->nonblocking in VM page out and page migration, because
a) it's effectively redundant with WB_SYNC_NONE in current code
b) it's old semantic of "Don't get stuck on request queues" is mis-behavior:
   that would skip some dirty inodes on congestion and page out others, which
   is unfair in terms of LRU age.

Inspired by Christoph Hellwig. Thanks!

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: David Howells <dhowells@redhat.com>
Cc: Sage Weil <sage@newdream.net>
Cc: Steve French <sfrench@samba.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
David Rientjes d19d5476f4 oom: fix locking for oom_adj and oom_score_adj
The locking order in oom_adjust_write() and oom_score_adj_write() for
task->alloc_lock and task->sighand->siglock is reversed, and lockdep
notices that irqs could encounter an ABBA scenario.

This fixes the locking order so that we always take task_lock(task) prior
to lock_task_sighand(task).

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
David Rientjes 723548bff1 oom: rewrite error handling for oom_adj and oom_score_adj tunables
It's better to use proper error handling in oom_adjust_write() and
oom_score_adj_write() instead of duplicating the locking order on various
exit paths.

Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
David Rientjes 1e99bad0d9 oom: kill all threads sharing oom killed task's mm
It's necessary to kill all threads that share an oom killed task's mm if
the goal is to lead to future memory freeing.

This patch reintroduces the code removed in 8c5cd6f3 (oom: oom_kill
doesn't kill vfork parent (or child)) since it is obsoleted.

It's now guaranteed that any task passed to oom_kill_task() does not share
an mm with any thread that is unkillable.  Thus, we're safe to issue a
SIGKILL to any thread sharing the same mm.

This is especially necessary to solve an mm->mmap_sem livelock issue
whereas an oom killed thread must acquire the lock in the exit path while
another thread is holding it in the page allocator while trying to
allocate memory itself (and will preempt the oom killer since a task was
already killed).  Since tasks with pending fatal signals are now granted
access to memory reserves, the thread holding the lock may quickly
allocate and release the lock so that the oom killed task may exit.

This mainly is for threads that are cloned with CLONE_VM but not
CLONE_THREAD, so they are in a different thread group.  Non-NPTL threads
exist in the wild and this change is necessary to prevent the livelock in
such cases.  We care more about preventing the livelock than incurring the
additional tasklist in the oom killer when a task has been killed.
Systems that are sufficiently large to not want the tasklist scan in the
oom killer in the first place already have the option of enabling
/proc/sys/vm/oom_kill_allocating_task, which was designed specifically for
that purpose.

This code had existed in the oom killer for over eight years dating back
to the 2.4 kernel.

[akpm@linux-foundation.org: add nice comment]
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
David Rientjes e18641e19a oom: avoid killing a task if a thread sharing its mm cannot be killed
The oom killer's goal is to kill a memory-hogging task so that it may
exit, free its memory, and allow the current context to allocate the
memory that triggered it in the first place.  Thus, killing a task is
pointless if other threads sharing its mm cannot be killed because of its
/proc/pid/oom_adj or /proc/pid/oom_score_adj value.

This patch checks whether any other thread sharing p->mm has an
oom_score_adj of OOM_SCORE_ADJ_MIN.  If so, the thread cannot be killed
and oom_badness(p) returns 0, meaning it's unkillable.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Ying Han 3d5992d2ac oom: add per-mm oom disable count
It's pointless to kill a task if another thread sharing its mm cannot be
killed to allow future memory freeing.  A subsequent patch will prevent
kills in such cases, but first it's necessary to have a way to flag a task
that shares memory with an OOM_DISABLE task that doesn't incur an
additional tasklist scan, which would make select_bad_process() an O(n^2)
function.

This patch adds an atomic counter to struct mm_struct that follows how
many threads attached to it have an oom_score_adj of OOM_SCORE_ADJ_MIN.
They cannot be killed by the kernel, so their memory cannot be freed in
oom conditions.

This only requires task_lock() on the task that we're operating on, it
does not require mm->mmap_sem since task_lock() pins the mm and the
operation is atomic.

[rientjes@google.com: changelog and sys_unshare() code]
[rientjes@google.com: protect oom_disable_count with task_lock in fork]
[rientjes@google.com: use old_mm for oom_disable_count in exec]
Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Matt Mackall 0f4d208f19 Documentation/filesystems/proc.txt: improve smaps field documentation
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Nikanth Karthikesan <knikanth@suse.de>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
WANG Cong a4f7326da2 vmcore: it is not experimental any more
We use vmcore in our production kernel for a long time, it is pretty
stable now.  So I don't think we need to mark it as experimental any more.

Signed-off-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Richard Weinberger dbec921370 um: fix IRQ flag handling naming
Commit df9ee292 ("Fix IRQ flag handling naming") changed the IRQ flag
handling naming scheme and broke UML:

In file included from arch/um/include/asm/fixmap.h:5,
                 from arch/um/include/shared/um_uaccess.h:10,
                 from arch/um/include/asm/uaccess.h:41,
                 from arch/um/include/asm/thread_info.h:13,
                 from include/linux/thread_info.h:56,
                 from include/linux/preempt.h:9,
                 from include/linux/spinlock.h:50,
                 from include/linux/seqlock.h:29,
                 from include/linux/time.h:8,
                 from include/linux/stat.h:60,
                 from include/linux/module.h:10,
                 from init/main.c:13:
arch/um/include/asm/system.h:11:1: warning: "local_save_flags" redefined

This patch brings the new scheme to UML and makes it work again.

Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:05 -07:00
Masanori ITOH 8474b591fa percpu: fix list_head init bug in __percpu_counter_init()
WARNING: at lib/list_debug.c:26 __list_add+0x3f/0x81()
Hardware name: Express5800/B120a [N8400-085]
list_add corruption. next->prev should be prev (ffffffff81a7ea00), but was dead000000200200. (next=ffff88080b872d58).
Modules linked in: aoe ipt_MASQUERADE iptable_nat nf_nat autofs4 sunrpc bridge 8021q garp stp llc ipv6 cpufreq_ondemand acpi_cpufreq freq_table dm_round_robin dm_multipath kvm_intel kvm uinput lpfc scsi_transport_fc igb ioatdma scsi_tgt i2c_i801 i2c_core dca iTCO_wdt iTCO_vendor_support pcspkr shpchp megaraid_sas [last unloaded: aoe]
Pid: 54, comm: events/3 Tainted: G        W  2.6.34-vanilla1 #1
Call Trace:
[<ffffffff8104bd77>] warn_slowpath_common+0x7c/0x94
[<ffffffff8104bde6>] warn_slowpath_fmt+0x41/0x43
[<ffffffff8120fd2e>] __list_add+0x3f/0x81
[<ffffffff81212a12>] __percpu_counter_init+0x59/0x6b
[<ffffffff810d8499>] bdi_init+0x118/0x17e
[<ffffffff811f2c50>] blk_alloc_queue_node+0x79/0x143
[<ffffffff811f2d2b>] blk_alloc_queue+0x11/0x13
[<ffffffffa02a931d>] aoeblk_gdalloc+0x8e/0x1c9 [aoe]
[<ffffffffa02aa655>] aoecmd_sleepwork+0x25/0xa8 [aoe]
[<ffffffff8106186c>] worker_thread+0x1a9/0x237
[<ffffffffa02aa630>] ? aoecmd_sleepwork+0x0/0xa8 [aoe]
[<ffffffff81065827>] ? autoremove_wake_function+0x0/0x39
[<ffffffff810616c3>] ? worker_thread+0x0/0x237
[<ffffffff810653ad>] kthread+0x7f/0x87
[<ffffffff8100aa24>] kernel_thread_helper+0x4/0x10
[<ffffffff8106532e>] ? kthread+0x0/0x87
[<ffffffff8100aa20>] ? kernel_thread_helper+0x0/0x10

It's because there is no initialization code for a list_head contained in
the struct backing_dev_info under CONFIG_HOTPLUG_CPU, and the bug comes up
when block device drivers calling blk_alloc_queue() are used.  In case of
me, I got them by using aoe.

Signed-off-by: Masanori Itoh <itoumsn@nttdata.co.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Andrew Morton 52c5171214 kfifo: disable __kfifo_must_check_helper()
This helper is wrong: it coerces signed values into unsigned ones, so code
such as

	if (kfifo_alloc(...) < 0) {
		error
	}

will fail to detect the error.

So let's disable __kfifo_must_check_helper() for 2.6.36.

Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Stefani Seibold <stefani@seibold.net>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Richard Weinberger 1b627d5771 hostfs: fix UML crash: remove f_spare from hostfs
365b1818 ("add f_flags to struct statfs(64)") resized f_spare within
struct statfs which caused a UML crash.  There is no need to copy f_spare.

Signed-off-by: Richard Weinberger <richard@nod.at>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Tested-by: Toralf Förster <toralf.foerster@gmx.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Eric Dumazet de5e2ddf9b ipmi: proper spinlock initialization
Unloading ipmi module can trigger following error.  (if
CONFIG_DEBUG_SPINLOCK=y)

[ 9633.779590] BUG: spinlock bad magic on CPU#1, rmmod/7170
[ 9633.779606]  lock: f41f5414, .magic: 00000000, .owner:
<none>/-1, .owner_cpu: 0
[ 9633.779626] Pid: 7170, comm: rmmod Not tainted
2.6.36-rc7-11474-gb71eb1e-dirty #328
[ 9633.779644] Call Trace:
[ 9633.779657]  [<c13921cc>] ? printk+0x18/0x1c
[ 9633.779672]  [<c11a1f33>] spin_bug+0xa3/0xf0
[ 9633.779685]  [<c11a1ffd>] do_raw_spin_lock+0x7d/0x160
[ 9633.779702]  [<c1131537>] ? release_sysfs_dirent+0x47/0xb0
[ 9633.779718]  [<c1131b78>] ? sysfs_addrm_finish+0xa8/0xd0
[ 9633.779734]  [<c1394bac>] _raw_spin_lock_irqsave+0xc/0x20
[ 9633.779752]  [<f99d93da>] cleanup_one_si+0x6a/0x200 [ipmi_si]
[ 9633.779768]  [<c11305b2>] ? sysfs_hash_and_remove+0x72/0x80
[ 9633.779786]  [<f99dcf26>] ipmi_pnp_remove+0xd/0xf [ipmi_si]
[ 9633.779802]  [<c11f622b>] pnp_device_remove+0x1b/0x40

Fix this by initializing spinlocks in a smi_info_alloc() helper function,
right after memory allocation and clearing.

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: David Miller <davem@davemloft.net>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Michael Hennerich 1f9fa5216e drivers/misc/ad525x_dpot.c: fix typo in spi write16 and write24 transfer counts
This is a bug fix.  Some SPI connected devices using 16/24 bit accesses,
previously failed, now work.

This typo slipped in after testing, during some restructuring.

Signed-off-by: Michael Hennerich <michael.hennerich@analog.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Chris Verges <chrisv@cyberswitching.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Richard Weinberger 6915e04f88 um: remove PAGE_SIZE alignment in linker script causing kernel segfault.
The linker script cleanup that I did in commit 5d150a97f9 ("um: Clean up
linker script using standard macros.") (2.6.32) accidentally introduced an
ALIGN(PAGE_SIZE) when converting to use INIT_TEXT_SECTION; Richard
Weinberger reported that this causes the kernel to segfault with
CONFIG_STATIC_LINK=y.

I'm not certain why this extra alignment is a problem, but it seems likely
it is because previously

__init_begin = _stext = _text = _sinittext

and with the extra ALIGN(PAGE_SIZE), _sinittext becomes different from the
rest.  So there is likely a bug here where something is assuming that
_sinittext is the same as one of those other symbols.  But reverting the
accidental change fixes the regression, so it seems worth committing that
now.

Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Reported-by: Richard Weinberger <richard@nod.at>
Cc: Jeff Dike <jdike@addtoit.com>
Tested by: Antoine Martin <antoine@nagafix.co.uk>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:04 -07:00
Robin Holt 09358972bf sgi-xp: incoming XPC channel messages can come in after the channel's partition structures have been torn down
Under some workloads, some channel messages have been observed being
delayed on the sending side past the point where the receiving side has
been able to tear down its partition structures.

This condition is already detected in xpc_handle_activate_IRQ_uv(), but
that information is not given to xpc_handle_activate_mq_msg_uv().  As a
result, xpc_handle_activate_mq_msg_uv() assumes the structures still exist
and references them, causing a NULL-pointer deref.

Signed-off-by: Robin Holt <holt@sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
Richard Weinberger 482db6df17 um: fix global timer issue when using CONFIG_NO_HZ
This fixes a issue which was introduced by fe2cc53e ("uml: track and make
up lost ticks").

timeval_to_ns() returns long long and not int.  Due to that UML's timer
did not work properlt and caused timer freezes.

Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
Mel Gorman b7f50cfa36 mm, page-allocator: do not check the state of a non-existant buddy during free
There is a bug in commit 6dda9d55 ("page allocator: reduce fragmentation
in buddy allocator by adding buddies that are merging to the tail of the
free lists") that means a buddy at order MAX_ORDER is checked for merging.
 A page of this order never exists so at times, an effectively random
piece of memory is being checked.

Alan Curry has reported that this is causing memory corruption in
userspace data on a PPC32 platform (http://lkml.org/lkml/2010/10/9/32).
It is not clear why this is happening.  It could be a cache coherency
problem where pages mapped in both user and kernel space are getting
different cache lines due to the bad read from kernel space
(http://lkml.org/lkml/2010/10/13/179).  It could also be that there are
some special registers being io-remapped at the end of the memmap array
and that a read has special meaning on them.  Compiler bugs have been
ruled out because the assembly before and after the patch looks relatively
harmless.

This patch fixes the problem by ensuring we are not reading a possibly
invalid location of memory.  It's not clear why the read causes corruption
but one way or the other it is a buggy read.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Corrado Zoccolo <czoccolo@gmail.com>
Reported-by: Alan Curry <pacman@kosh.dhis.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
Andrew Morton a75d377686 types.h: move misplaced comment
This comment landed in the wrong place.

Cc: Andi Kleen <andi@firstfloor.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
KAMEZAWA Hiroyuki f8f72ad539 mm: fix return value of scan_lru_pages in memory unplug
scan_lru_pages returns pfn. So, it's type should be "unsigned long"
not "int".

Note: I guess this has been work until now because memory hotplug tester's
      machine has not very big memory....
      physical address < 32bit << PAGE_SHIFT.

Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
Roland Dreier 116e9535fe Merge branches 'amso1100', 'cma', 'cxgb3', 'cxgb4', 'ehca', 'iboe', 'ipoib', 'misc', 'mlx4', 'nes', 'qib' and 'srp' into for-next 2010-10-26 16:09:11 -07:00
Jason Gunthorpe 2ca78d23a7 IB/qib: clean up properly if pci_set_consistent_dma_mask() fails
Clean up properly if pci_set_consistent_dma_mask() fails.

Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 16:09:02 -07:00
Ralph Campbell 5d26a1df23 IB/qib: Allow driver to load if PCIe AER fails
Some PCIe root complex chip sets don't support advanced error reporting.
Allow the driver to load OK if pci_enable_pcie_error_reporting() fails.

Signed-off-by: Ralph Campbell <ralph.campbell@qlogic.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 16:09:02 -07:00
Ralph Campbell 9e43e0106d IB/qib: Fix uninitialized pointer if CONFIG_PCI_MSI not set
If CONFIG_PCI_MSI is not set, and a QLE7140 is present, the pointer
"dd" is uninitialized.

Signed-off-by: Ralph Campbell <ralph.campbell@qlogic.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 16:09:02 -07:00
Jason Gunthorpe 82fdb0ab54 IB/qib: Fix extra log level in qib_early_err()
Noticed this odd looking thing in dmesg:

    ib_qib 0000:02:00.0: <3>ib_qib: Unable to enable pcie error reporting: -5

which is due to a bad use of dev_info.

Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Acked-by: Ralph Campbell <ralph.campbell@qlogic.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 16:09:02 -07:00
Joe Perches aa1ad26089 RDMA/cxgb4: Remove unnecessary KERN_<level> use
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 13:45:59 -07:00
Joe Perches ca7cf94f8b RDMA/cxgb3: Remove unnecessary KERN_<level> use
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-10-26 13:45:49 -07:00
Len Brown c25d29952b intel_idle: do not use the LAPIC timer for ATOM C2
If we use the LAPIC timer during ATOM C2 on
some nvidia chisets, the system stalls.

https://bugzilla.kernel.org/show_bug.cgi?id=21032

Signed-off-by: Len Brown <len.brown@intel.com>
2010-10-26 15:45:17 -04:00
Len Brown 7e31842441 Merge branch 'misc' into release 2010-10-26 14:51:00 -04:00
Len Brown 1bd64d42ab Merge branch 'acpi-mmio' into release
Conflicts:
	drivers/acpi/osl.c

Signed-off-by: Len Brown <len.brown@intel.com>
2010-10-26 14:50:56 -04:00
Linus Torvalds f9ba5375a8 Merge branch 'ima-memory-use-fixes'
* ima-memory-use-fixes:
  IMA: fix the ToMToU logic
  IMA: explicit IMA i_flag to remove global lock on inode_delete
  IMA: drop refcnt from ima_iint_cache since it isn't needed
  IMA: only allocate iint when needed
  IMA: move read counter into struct inode
  IMA: use i_writecount rather than a private counter
  IMA: use inode->i_lock to protect read and write counters
  IMA: convert internal flags from long to char
  IMA: use unsigned int instead of long for counters
  IMA: drop the inode opencount since it isn't needed for operation
  IMA: use rbtree instead of radix tree for inode information cache
2010-10-26 11:37:48 -07:00
Eric Paris bade72d607 IMA: fix the ToMToU logic
Current logic looks like this:

        rc = ima_must_measure(NULL, inode, MAY_READ, FILE_CHECK);
        if (rc < 0)
                goto out;

        if (mode & FMODE_WRITE) {
                if (inode->i_readcount)
                        send_tomtou = true;
                goto out;
        }

        if (atomic_read(&inode->i_writecount) > 0)
                send_writers = true;

Lets assume we have a policy which states that all files opened for read
by root must be measured.

Lets assume the file has permissions 777.

Lets assume that root has the given file open for read.

Lets assume that a non-root process opens the file write.

The non-root process will get to ima_counts_get() and will check the
ima_must_measure().  Since it is not supposed to measure it will goto
out.

We should check the i_readcount no matter what since we might be causing
a ToMToU voilation!

This is close to correct, but still not quite perfect.  The situation
could have been that root, which was interested in the mesurement opened
and closed the file and another process which is not interested in the
measurement is the one holding the i_readcount ATM.  This is just overly
strict on ToMToU violations, which is better than not strict enough...

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 11:37:19 -07:00
Eric Paris 196f518128 IMA: explicit IMA i_flag to remove global lock on inode_delete
Currently for every removed inode IMA must take a global lock and search
the IMA rbtree looking for an associated integrity structure.  Instead
we explicitly mark an inode when we add an integrity structure so we
only have to take the global lock and do the removal if it exists.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 11:37:19 -07:00
Eric Paris 64c62f06be IMA: drop refcnt from ima_iint_cache since it isn't needed
Since finding a struct ima_iint_cache requires a valid struct inode, and
the struct ima_iint_cache is supposed to have the same lifetime as a
struct inode (technically they die together but don't need to be created
at the same time) we don't have to worry about the ima_iint_cache
outliving or dieing before the inode.  So the refcnt isn't useful.  Just
get rid of it and free the structure when the inode is freed.

Signed-off-by: Eric Paris <eapris@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 11:37:19 -07:00