This removes an OProfile dependency on the spufs module. This
dependency was causing a problem for multiplatform systems that are
built with support for Oprofile on Cell but try to load the oprofile
module on a non-Cell system.
Signed-off-by: Bob Nelson <rrnelson@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Acked-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Because spufs might be built as a module, we can't have other parts of the
kernel calling directly into it, we need stub routines that check first if the
module is loaded.
Currently we have two structures which hold callbacks for these stubs, the
syscalls are in spufs_calls and the coredump calls are in spufs_coredump_calls.
In both cases the logic for registering/unregistering is essentially the same,
so we can simplify things by combining the two.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Acked-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
At present, a built-in spufs will not use the spufs_calls callbacks, but
directly call sys_spu_create. This saves us an indirect branch, but
means we have duplicated functions - one for CONFIG_SPU_FS=y and one for
=m.
This change unifies the spufs syscall path, and provides access to the
spufs_calls structure through a get/put pair. At present, the only user
of the spufs_calls structure is spu_syscalls.c, but this will facilitate
adding the coredump calls later.
Everyone likes numbers, right? Here's a before/after comparison with
CONFIG_SPU_FS=y, doing spu_create(); close(); 64k times.
Before:
[jk@cell ~]$ time ./spu_create
performing 65536 spu_create calls
real 0m24.075s
user 0m0.146s
sys 0m23.925s
After:
[jk@cell ~]$ time ./spu_create
performing 65536 spu_create calls
real 0m24.777s
user 0m0.141s
sys 0m24.631s
So, we're adding around 11us per syscall, at the benefit of having
only one syscall path.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
do_spu_create doesn't need the asmlinkage qualifier; remove it.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There are a few symbols used only in one file within spufs; this change
makes them static where suitable.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch adds support for additional flags at spu_create, which relate
to the establishment of affinity between contexts and contexts to memory.
A fourth, optional, parameter is supported. This parameter represent
a affinity neighbor of the context being created, and is used when defining
SPU-SPU affinity.
Affinity is represented as a doubly linked list of spu_contexts.
Signed-off-by: Andre Detsch <adetsch@br.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
From: Sebastian Siewior <cbe-oss-dev@ml.breakpoint.cc>
The 'file' argument is unused in spufs_run_spu(). This change removes
it.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Add the concept of a gang to spufs as a new type of object.
So far, this has no impact whatsover on scheduling, but makes
it possible to add that later.
A new type of object in spufs is now a spu_gang. It is created
with the spu_create system call with the flags argument set
to SPU_CREATE_GANG (0x2). Inside of a spu_gang, it
is then possible to create spu_context objects, which until
now was only possible at the root of spufs.
There is a new member in struct spu_context pointing to
the spu_gang it belongs to, if any. The spu_gang maintains
a list of spu_context structures that are its children.
This information can then be used in the scheduler in the
future.
There is still a bug that needs to be resolved in this
basic infrastructure regarding the order in which objects
are removed. When the spu_gang file descriptor is closed
before the spu_context descriptors, we leak the dentry
and inode for the gang. Any ideas how to cleanly solve
this are appreciated.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This tries to fix spufs so we have an interface closer to what is
specified in the man page for events returned in the third argument of
spu_run.
Fortunately, libspe has never been using the returned contents of that
register, as they were the same as the return code of spu_run (duh!).
Unlike the specification that we never implemented correctly, we now
require a SPU_CREATE_EVENTS_ENABLED flag passed to spu_create, in
order to get the new behavior. When this flag is not passed, spu_run
will simply ignore the third argument now.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
These symbols are only used in the file that they are defined in,
so they should not be in the global namespace.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
One local variable is missing an __iomem modifier,
in another place, we pass a completely unused argument
with a missing __user modifier.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Only checking for SPUFS_MAGIC is not reliable, because
it might not be unique in theory. Worse than that,
we accidentally allow spu_run to be performed on
any file in spufs, not just those returned from
spu_create as intended.
Noticed by Al Viro.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds a scheduler for SPUs to make it possible to use
more logical SPUs than physical ones are present in the
system.
Currently, there is no support for preempting a running
SPU thread, they have to leave the SPU by either triggering
an event on the SPU that causes it to return to the
owning thread or by sending a signal to it.
This patch also adds operations that enable accessing an SPU
in either runnable or saved state. We use an RW semaphore
to protect the state of the SPU from changing underneath
us, while we are holding it readable. In order to change
the state, it is acquired writeable and a context save
or restore is executed before downgrading the semaphore
to read-only.
From: Mark Nutter <mnutter@us.ibm.com>,
Uli Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This is the current version of the spu file system, used
for driving SPEs on the Cell Broadband Engine.
This release is almost identical to the version for the
2.6.14 kernel posted earlier, which is available as part
of the Cell BE Linux distribution from
http://www.bsc.es/projects/deepcomputing/linuxoncell/.
The first patch provides all the interfaces for running
spu application, but does not have any support for
debugging SPU tasks or for scheduling. Both these
functionalities are added in the subsequent patches.
See Documentation/filesystems/spufs.txt on how to use
spufs.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>